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Overview on UED
• Universal: all SM particles in flat ED (no gravity)
• The simplest model: S1/Z2 (5D)
• KK tower after compactification with n/R
• KK-parity: (-1)

– all SM particles (zero mode) are even
– level 1 KK particles (n=1) are odd
– level 2 KK particles (n=2) are even
– electroweak precision constraints are avoided

• new contributions are loop-suppressed
– the LKP is stable and a DM candidate
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Figure 1–3: S1/Z2 orbifold. A half of the circle (S1) is identified with the other half
with a Z2 symmetry. The geometry becomes a line with two fixed points. The line
between two fixed points represents the bulk.

1. The lightest KK-partners (those at level 1) must always be pair-produced

in collider experiments, which leads to relatively weak bounds from direct

searches.

2. The KK-parity conservation implies that the contributions to various pre-

cisely measured low-energy observables only arise at the loop level and are

small.

3. Finally the KK-parity guarantees that the lightest KK partner is stable, and

thus can be a cold dark matter candidate.

As we will see in the next chapters, the phenomenology of this scenario clearly

resembles that of supersymmetry. In this sense, many of the SUSY studies in the

literature apply, and it is perhaps more important to find methods to distinguish

between the two models. Recently, other models such as little Higgs theory with

T-parity have been proposed as new physics beyond the Standard Model. Our

studies can also apply in the case of little Higgs models since the first level of the

UED model looks like the little Higgs particle spectrum.

Except for its abundance, no other properties of dark matter candidates are

known at present. Therefore it is important to study the properties of new types

of dark matter candidates in the extra dimensional models and compare them with

those in supersymmetry. Then a number of questions can arise: What are the
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Figure 3: The 90% C.L. allowed region in the 5D UED model on S1/Z2. Up to 11 KK levels
are included. Also shown is the direct search limit mH ≥ 114GeV.

5 Two universal extra dimensions on T 2/Z2

In the case of one extra dimension, the KK contributions to S, T and U converge rapidly

before encountering the cutoff Ms, and the contributions from physics above Ms are

sufficiently small to be neglected. Thus, practically the presence of Ms is not significant.

However, the KK sum diverges logarithmically in the 6D standard model, so we cannot

expect a reliable estimate from only summing the KK modes. A possible procedure is to

sum the KK modes up to the cutoff of the 6D model and then, as described in section 3,

to represent the physics beyond the cutoff by an appropriate operator. A problem with

this procedure is that while each term in the KK sum maintains 4D gauge invariance, the

truncated sum is not expected to respect the the full 6D gauge invariance upon which the

6D standard model is based 2. As noted below, however, the natural cutoff on the effective

6D theory is at about the fifth or sixth KK level. With successive terms falling like 1/j

and with the high energy contribution represented by a 6D-gauge-invariant operator, we

expect the lack of 6D gauge invariance to be relatively small - perhaps no more than a

20% effect. We adopt this procedure with the understanding that unlike the 5D case,

2H.-U.Y. thanks Takemichi Okui for discussions of this point at TASI 2002.
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More on UED
• Minimal UED: mass splitting be generated by radiative 

corrections (assuming no boundary terms and no bulk masses) 
• Short RG running leads to compressed mass spectrum
• Two parameters: R, Lambda (cutoff)

FIG. 6: The spectrum of the first KK level at (a) tree level and (b) one-loop, for R−1 = 500 GeV,

ΛR = 20, mh = 120 GeV, m2
H = 0, and assuming vanishing boundary terms at the cut-off scale Λ.

R−1 = 500 GeV, ΛR = 20, mh = 120 GeV, m2
H = 0 and assumed vanishing boundary

terms at the cut-off scale Λ. We see that the KK “photon” receives the smallest corrections

and is the lightest state at each KK level. Unbroken KK parity (−1)KK implies that the

lightest KK particle (LKP) at level one is stable. Hence the “photon” LKP γ1 provides an

interesting dark matter candidate. The corrections to the masses of the other first level KK

states are generally large enough that they will have prompt cascade decays down to γ1.3

Therefore KK production at colliders results in generic missing energy signatures, similar

to supersymmetric models with stable neutralino LSP. Collider searches for this scenario

appear to be rather challenging because of the KK mass degeneracy and will be discussed

in a separate publication [13].

V. CONCLUSIONS

Loop corrections to the masses of Kaluza-Klein excitations can play an important role

in the phenomenology of extra dimensional theories. This is because KK states of a given

level are all nearly degenerate, so that small corrections can determine which states decay

and which are stable.

3 The first level graviton G1 (or right-handed neutrino N1 if the theory includes right handed neutrinos N0)

could also be the LKP. However, the decay lifetime of γ1 to G1 or N1 would be comparable to cosmo-

logical scales. Therefore, G1 and N1 are irrelevant for collider phenomenology but may have interesting

consequences for cosmology.
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More on UED
• Two parameters: R, Lambda (cutoff)
• The same spin: SM and KK partners
• Larger production cross sections (compared to SUSY 

productions), i.e., KK gluon, KK quark productions
• Decay products are softer
• 4 leptons with large branching fractions3

electroweak interactions are a few percent. We find that
the corrections to the masses are such that mgn

> mQn
>

mqn
> mWn

∼ mZn
> mLn

> m!n
> mγn

. The light-
est KK particle γ1, is a mixture of the first KK mode
B1 of the U(1)Y gauge boson B and the first KK mode
W 0

1 of the SU(2)W W 3 gauge boson. (The possibility of
the first level KK graviton being the LKP is irrelevant
for collider phenomenology, since the decay lifetime of γ1

to G1 would be of cosmological scales.) We will usually
denote this state by γ1. However, note that the corre-
sponding “Weinberg” angle θ1 is much smaller than the
Weinberg angle θW of the Standard Model [10], so that
the γ1 LKP is mostly B1 and Z1 is mostly W 0

1 . The mass
splittings among the level 1 KK modes are large enough
for the prompt decay of a heavier level 1 KK mode to a
lighter level 1 KK mode. But since the spectrum is still
quite degenerate, the ordinary SM particles emitted from
these decays will be soft, posing a challenge for collider
searches.

The terms localized at the orbifold fixed points also
violate the KK number by even units. However, assum-
ing that no explicit KK-parity violating effects are put
in by hand, KK parity remains an exact symmetry. The
boundary terms allow higher (n > 1) KK modes to decay
to lower KK modes, and even level states can be singly
produced (with smaller cross sections because the bound-
ary couplings are volume suppressed). Thus KK number
violating boundary terms are important for higher KK
mode searches as we will discuss in Section IV.

III. FIRST KK LEVEL

Once the radiative corrections are included, the KK
mass degeneracy at each level is lifted and the KK modes
decay promptly. The collider phenomenology of the first
KK level is therefore very similar to a supersymmetric
scenario in which the superpartners are relatively close
in mass - all squeezed within a mass window of 100-200
GeV (depending on the exact value of R). Each level
1 KK particle has an exact analogue in supersymmetry:
B1 ↔ bino, g1 ↔ gluino, Q1(q1) ↔ left-handed (right-
handed) squark, etc. The decay cascades of the level 1
KK modes will terminate in the γ1 LKP (Fig. 3). Just
like the neutralino LSP is stable in R-parity conserving
supersymmetry, the γ1 LKP in MUEDs is stable due to
KK parity conservation and its production at colliders
results in generic missing energy signals.

It is known that supersymmetry with a stable neu-
tralino LSP is difficult to discover at hadron colliders
if the superpartner spectrum is degenerate. Hence the
discovery of level 1 KK modes in MUEDs at first sight
appears problematic as well – the decay products result-
ing from transitions between level 1 KK states may be
too soft for reliable experimental observation at hadron
colliders. This issue is the subject of this Section.

Before we address the possible level 1 discovery chan-
nels in some detail, we need to determine the allowed

FIG. 3: Qualitative sketch of the level 1 KK spectroscopy de-
picting the dominant (solid) and rare (dotted) transitions and
the resulting decay product.

decays at level 1 and estimate their branching fractions.
For any given set of input parameters (3) the mass spec-
trum and couplings of the KK modes in MUEDs are
exactly calculable [10]. Hence one obtains very robust
predictions for the main branching ratios of interest for
phenomenology.

KK gluon.— The heaviest KK particle at level 1 is the
KK gluon g1. Its two-body decays to KK quarks Q1 and
q1 are always open and have similar branching fractions:
B(g1 → Q1Q0) $ B(g1 → q1q0) $ 0.5.

KK quarks.— The case of SU(2)-singlet quarks (q1)
is very simple – they can only decay to the hyper-
charge gauge boson B1, hence their branchings to Z1

are suppressed by the level 1 Weinberg angle θ1 % θW :
B(q1 → Z1q0) $ sin2 θ1 ∼ 10−2 − 10−3 while B(q1 →
γ1q0) $ cos2 θ1 ∼ 1. Thus q1 production yields jets
plus missing energy, the exception being t1 → W+

1 b0 and
t1 → H+

1 b0 (the latter will be in fact the dominant source
of H+

1 production at hadron colliders).
SU(2)-doublet quarks (Q1) can decay to W±

1 , Z1 or
γ1. In the limit sin θ1 % 1 SU(2)W -symmetry implies

B(Q1 → W±
1 Q′

0) $ 2B(Q1 → Z1Q0) (4)

and furthermore for massless Q0 we have

B(Q1 → Z1Q0)

B(Q1 → γ1Q0)
$

g2
2 T 2

3Q (m2
Q1

− m2
Z1

)

g2
1 Y 2

Q (m2
Q1

− m2
γ1

)
, (5)

where g2 (g1) is the SU(2)W (U(1)Y ) gauge coupling, and
T3 and Y stand for weak isospin and hypercharge, corre-
spondingly. We see that the Q1 decays to SU(2) gauge
bosons, although suppressed by phase space, are numeri-
cally enhanced by the ratio of the couplings and quantum
numbers. With typical values for the mass corrections
from Fig. 2, eqs. (4) and (5) yield B(Q1 → W±

1 Q′
0) ∼

65%, B(Q1 → Z1Q0) ∼ 33% and B(Q1 → γ1Q0) ∼ 2%.

4

KK W - and Z-bosons.— With their hadronic decays
closed, W±

1 and Z1 decay democratically to all lepton
flavors: B(W±

1 → ν1L
±
0 ) = B(W±

1 → L±
1 ν0) = 1

6
and

B(Z1 → ν1ν̄0) = B(Z1 → L±
1 L∓

0 ) " 1
6

for each genera-
tion. Z1 → "±1 "∓0 decays are suppressed by sin2 θ1.

KK leptons.— The level 1 KK modes of the charged
leptons as well as the neutrinos decay directly to γ1.
As a result W±

1 and Z1 always effectively decay as
W±

1 → γ1L
±
0 ν0 and Z1 → γ1L

±
0 L∓

0 or Z1 → γ1ν0ν̄0,
with relatively large e and µ yields.

KK Higgs bosons.— Their decays depend on their
masses. They can decay into the KK W , Z bosons or
KK t, b quarks if they are heavier and the phase space
is open. On the other hand, if they are lighter than W1,
Z1, t1, b1 (as in the example of Fig. 1), their tree-level
two-body decays will be suppressed. Then they will de-
cay to γ1 and the corresponding virtual zero-level Higgs
boson, or to γ1γ0 through a loop.

We are now in shape to discuss the optimum strategy
for MUEDs KK searches at hadron colliders. Level 1
KK states necessarily have to be pair produced, due to
KK parity conservation. The approximate mass degen-
eracy at each level ensures that strong production dom-
inates, with all three subprocesses (quark-quark, quark-
gluon and gluon-gluon) having comparable rates [8, 12].

For an estimate of the reach at the Tevatron or the
LHC, we need to discuss the final state signatures and
the related backgrounds. The signature with the largest
overall rate is #ET +N ≥ 2 jets, which is similar to the tra-
ditional squark and gluino searches [13]. It arises from
inclusive (direct or indirect) q1q1 production. Roughly
one quarter of the total strong production cross-section
σhad

tot materializes in q1q1 events. However, in spite of the
large missing mass in these events, the measured missing
energy is rather small, since it is correlated with the en-
ergy of the relatively soft recoiling jets. As a conservative
rough guide for the discovery reach we can use existing
studies of the analogous supersymmetric case. One might
expect that Run II can probe R−1 ∼ 300 GeV [14] while
the LHC reach for R−1 is no larger than 1.2 TeV [15].
While the jetty signatures can be potentially used for dis-
covery, further studies in an MUEDs context are needed.
Here we prefer to discuss the much cleaner multilepton
final states arising from diboson (W±

1 or Z1) production.
Consider inclusive Q1Q1 production, whose cross-

section also roughly equals 1
4
σhad

tot . The subsequent de-
cays of Q1’s yield W±

1 W±
1 , W±

1 Z1 and Z1Z1 pairs in pro-
portion 4 : 4 : 1. The W±

1 and Z1 decays in turn provide
multilepton final states with up to 4 leptons plus missing
energy, all of which may offer the possibility of a discov-
ery. In the following we concentrate on the gold-plated
4" #ET signature.

We shall conservatively ignore additional signal con-
tributions from direct diboson production and Q1W

±
1

or Q1Z1 processes. For the Tevatron we use the sin-
gle lepton triggers pT (") > 20 GeV and |η(e)| < 2.0,
|η(µ)| < 1.5; or the missing energy trigger #ET > 40 GeV.
Because the channel is very clean, we use relatively soft

FIG. 4: Discovery reach for MUEDs at the Tevatron (blue)
and the LHC (red) in the 4! !ET channel. We require a 5σ

excess or the observation of 5 signal events, and show the
required total integrated luminosity per experiment (in fb−1)
as a function of R

−1, for ΛR = 20. (In either case we do not
combine the two experiments).

off-line cuts, pT (") > {15, 10, 10, 5} GeV, |η(")| < 2.5 and
#ET > 30 GeV. The remaining physics background comes
from ZZ → "±"∓τ+τ− → 4" #ET where Z stands for a
real or virtual Z or γ [16], and can be reduced by invari-
ant mass cuts for any pair of opposite sign, same flavor
leptons: |m!! − MZ | > 10 GeV and m!! > 10 GeV. As
a result, the expected background is less than 1 event in
all of Run II and we require 5 signal events for discovery.
The reach is shown in Fig. 4. We see that Run IIb of
the Tevatron will go slightly beyond the current indirect
bounds (R−1 > 300 GeV) from precision data [1].

For the LHC we use pT (") > {35, 20, 15, 10} GeV with
|η(")| < 2.5, which is enough for the single lepton trig-
ger. In addition, we require #ET > 50 GeV and the same
dilepton invariant mass cut. There are now several rele-
vant background sources, including multiple gauge boson
and/or top quark production [17], fakes, leptons from b-
jets etc. We conservatively assume a background level of
50 events after cuts per 100 fb−1 (1 year of running at
high luminosity). Our LHC reach estimate is presented
in Fig. 4. Without combining experiments, we plot the
total integrated luminosity L required for either an ob-
servation of 5 signal events or a 5σ excess over the back-
ground. The reach, shown as a solid line, is defined as
the larger of the two and extends to R−1 ∼ 1.5 TeV.

Other leptonic channels such as two or three leptons
with #ET may also be considered. They have more back-
grounds but take advantage of the larger branching frac-
tion for Q1 → W±

1 Q′
0 and offer higher statistics, which

may prove useful especially for the case of the Tevatron.
In conclusion, note that at a hadron collider all signals

from level 1 KK states look very much like supersym-
metry – all SM particles have “partners” with similar
couplings, and identifying the extra-dimensional nature

0205314, Cheng, Matchev, Schmaltz
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Figure 3: Prediction for ΩB(1)h2 as in Figure 1. The solid line is the case for B(1) alone,
and the dashed and dotted lines correspond to the case in which there are one (three)

flavors of nearly degenerate e(1)
R . For each case, the black curves (upper of each pair)

denote the case ∆ = 0.01 and the red curves (lower of each pair) ∆ = 0.05.

translates into a KK mass window slightly below the window obtained for B(1) alone. In
Figure 3 we present the resulting relic abundance of B(1) including both the one flavor
and three flavors of e(1)

R , for two choices of ∆ corresponding to 1% and 5% mass splittings.
The curves become approximately degenerate with the B(1) without coannihilation case
when ∆ ∼> 0.1. In each case, the resulting mKK window shifts slightly downward because
of the increase in the predicted relic density, favoring values between 600 − 1050 GeV,
depending on the number of light e(1)

R flavors and the mass splitting.

6.2 ν(1) Coannihilation with e(1)
L

As mentioned in the introduction of section 5, one should include e(1)
L in the calculation

of the LKP relic density when assuming that the LKP is ν(1). Indeed, ν(1) and e(1)
L are

expected to be nearly degenerate, with tree level mass splittings on the order of the mass
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Figure 1: Ωh2 as function of R−1 for mh = 120 GeV, ΛR = 20 (left) and ΛR = 50 (right)
including different processes as specified on the figure. Here 1-loop stands for one-loop
couplings between level 2 and SM particles. The shaded region corresponds to the 3σ
preferred region obtained by WMAP [13].

impact on the relic density, see Fig. 1. This is mainly because the new contribution from
the process γ1h1+ → h2+ → tb̄ benefits from a resonance enhancement thus increasing
significantly the effective annihilation cross section. This result depends very sensitively
on the mass of the level-2 particle, a small downward shift in the mass, such as in the
MUED model used in [11], where the renormalization scale is set to µ = 2R−1 for the
level 2 masses, means that the pole effect is avoided at the LKP decoupling temperature.
When including the contribution of h2 and neglecting level 2 KK-particles in the final
state, the prediction for the relic abundance is close to the one obtained including only
annihilation processes.

When allowing level-2 particles in the final state, mainly γ2 and h2, a2, a±2, the relic
abundance decreases sharply shifting the preferred value of the DM mass above the TeV
scale. This is due to the important contribution of the coannihilation channels (l1γ1 →
lγ2) that are enhanced by the exchange near resonance of the n = 2 KK singlet lepton.
Together these channels make up more than 50% of the (co)annihilation channels. As
previously, other coannihilation channels each contribute to a small fraction of the total
effective cross section. The contribution of the most important channels is illustrated in
Fig. 2, where we have summed the contribution of all leptons in the initial states and all
SM particles in the final state. Coannihilation channels involving lepton pairs contribute
around 15% and their contribution is comparable to the one of Higgs channels γ1H1

at large values of R−1. Contributions of the order of a few percent are found for the
annihilation channels, γ1γ1, as well as coannihilations of the type l1H1, H1H1 or γ1l1 into
only SM particles. This still leaves around 10% contribution from all remaining channels,
among these one finds notably channels involving gauge bosons such as V 1H1 or V 1l1.

The value of the cut-off scale Λ has an impact on the mass of the KK particles through
logarithmic one-loop corrections, Eq. 11. Increasing the scale to ΛR = 50 leads to heavier
KK particles, in particular for KK lepton doublets and KK quarks, and has an impact on
Ωh2. For example when ignoring the level 2 particles in the final state the contribution
of coannihilation channels with KK leptons suffers from a larger Bolzmann suppression
factor, this is partly compensate by an increase in the contribution of the h2+ pole (as

10
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Figure 4: Feynman diagrams for B(1)B(1) annihilation into fermions.
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Figure 5: Feynman diagrams for B(1)B(1) annihilation into Higgs scalar bosons.

possibility of a sterile neutrino or its KK modes. For the purposes of this discussion,
we assume a neutrino which is the weak partner of the left-handed electron; the results
for the weak partners of the muon or tau are simply obtained by appropriately replacing
the exchanged particles in specific processes. We continue to neglect fermion and boson
masses, and ignore fermion mixing.

The ν(1) can annihilate with ν(1) into quark (and other family lepton) zero modes
through an s-channel Z zero mode (Figure 6). The cross section is given by,

σ(ν(1)ν(1) → ff) =
Ncg2

Z (ḡ2
L + ḡ2

R) (s + 2 m2)

24 π β s2
, (48)

where,

gZ =
e

2sW cW
, (49)

are the couplings of the Z0 to ν(1)ν(1) and ḡL(R) are the standard zero mode couplings
between the Z0 and f f̄ ,

ḡL(R) =
e

sW cW

[

T 3 − Qfs
2
W

]

(50)

where T 3 is the third component of weak iso-spin of f and Qf its charge. Nc accounts for
the sum over final state color configurations, as before.

Annihilation into zero modes of the charged lepton partner e+e− proceeds either
through an s-channel Z or a t-channel W (1)

+ (Figure 7), or into its own zero modes (νν)
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Current bounds from LHC

4.3 LHC discovery reach

Now we are in a position to produce results for the LHC reach. We have per-

formed a Monte Carlo signal simulation for the grid in the (R−1,ΛR) plane
using the power of the High Energy Physics Model Database (HEPMDB)
[http://hepmdb.soton.ac.uk/][45] and have applied the combined set of cuts (4.3),

(4.4), (4.5), (4.6) and (4.7) described above.

LHC @ 7 TeV: MUED reach for 3-lepton signature
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LHC @ 8 TeV: MUED reach for 3-lepton signature
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Figure 19: LHC @ 7 TeV (top) and LHC @ 8 TeV (bottom) exclusion and discovery

potential for MUED for different luminosities.
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Figure 20: Constant mass contours for n = 1 KK gluons and KK quarks, using u(1)1,2 for

illustration. (KK indices are suppressed.)

The results are shown in figure 19 in terms of exclusion (at 95% CL) and disovery
(5σ) contours for

√
s = 7 and 8 TeV and different luminosities. For both criteria,

– 33 –

• Collider and low energy experiments provide lower bound 
on KK scale (1/R)

• Minimal UED (2 parameters) is very constrained
• Cutoff dependence is logarithmic

Belyaev, Brown, Moreno, Papineau 2012 



SUSY vs UED

• SUSY-like cascade decays at the LHC from the first KK modes.

• Distinct feature: 2nd KK modes. 

SUSY: q̃

χ̃0
2

"̃∓
L

χ̃0
1

UED: Q1

Z1

"∓1

γ1

q

"± (near)

"∓ (far)

FIG. 10: Twin diagrams in SUSY and UED. The upper (red) line corresponds to the cascade decay

q̃ → qχ̃0
2 → q"±"̃∓L → q"+"−χ̃0

1 in SUSY. The lower (blue) line corresponds to the cascade decay

Q1 → qZ1 → q"±"∓1 → q"+"−γ1 in UED. In either case the observable final state is the same:

q"+"− /ET .

analogous decay chain Q1 → qZ1 → q!±!∓1 → q!+!−γ1 in UED [11, 12]. Both of these

processes are illustrated in Fig. 10.

FIG. 11: Lepton-quark invariant mass distributions in (a) UED with R−1 = 500 GeV and (b)

supersymmetry with a matching sparticle spectrum. We show separately the distributions with

the near and far lepton, and their sum. The positive (negative) charge leptons are shown in red

(blue).

Next, one forms the lepton-quark invariant mass distributions M!q (see Fig. 11). The

spin of the intermediate particle (Z1 in UED or χ̃0
2 in SUSY) governs the shape of the

distributions for the near lepton. However, in practice we cannot distinguish the near and

far lepton, and one has to include the invariant mass combinations with both leptons. This

tends to wash out the spin correlations, but a residual effect remains, which is due to the
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Figure 3. The effective f̄0V
µ
2 f0 KK-number violating coupling on the left is generated at

one loop order from the one loop diagram on the right.

boundary (δ̄) contributions [82]:

δ̂m2
Vn

≡ δm2
Vn

+ δ̄m2
Vn

. (13)

Note that for n ≥ 1 the KK mixing angle θn is in general different from the zero-mode

(Weinberg) angle θ0 ≡ θW in the SM. For typical values of R−1 and Λ, θn # θW , and

the neutral gauge boson KK mass eigenstates become approximately aligned with the

corresponding interaction eigenstates: γn ≈ Bn and Zn ≈ W 3
n for n ≥ 1. This approximation

will be used in our MUED implementation described below in Section 3.

2.3. KK interactions

The bulk interactions of the KK modes are already fixed by the SM. The 5D MUED

Lagrangian is a straightforward generalization of the SM Lagrangian to 5 dimensions, as

discussed in Appendix A. Upon compactification, integrating over the extra-dimensional

coordinate y, one recovers the bulk interactions among the various KK modes and their SM

counterparts (see Appendix C). Since translational invariance holds in the bulk, all these

bulk interactions conserve both KK number and KK parity.

However, as already alluded to in the previous subsection, there may also exist

“boundary” interactions localized on the fixed points in Fig. 1. They do not respect

translational invariance and therefore break KK number by even units. Such interactions

may already appear at the scale Λ, being generated by the new physics which is the ultraviolet

completion of UED. In the Minimal UED version, one makes the assumption that no such

terms are present at the scale Λ. Even so, upon renormalization to lower energy scales,

boundary terms are radiatively generated from bulk interactions. This is illustrated in Fig. 3,

where we show how an effective coupling between a level 2 KK gauge boson V2 and two SM
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Table 2. Boundary interactions involving level 2 KK gauge bosons and two SM fermions.

Here I3 is the fermion isospin and YL (YR) is the hypercharge of a left-handed (right-handed)

SM fermion. In the case of top quarks, one has to include in δ̄(mf2) the additional corrections

proportional to the top Yukawa coupling ht: δ̄ht
mTn

and δ̄ht
mtn , respectively (see [82] for

details).

n = 2 KK boson n = 0 SM fermion Vertex

U(1)Y gauge boson Lepton ig1γµ 1√
2

1
16π2 ln

(

Λ
µ

)2
[

YL

2
PL

(

31
24
g21 +

27
8
g22
)

+YR

2
PR

(

14
3
g21
)]

B2 Quark (up) ig1γµ 1√
2

1
16π2 ln

(

Λ
µ

)2
[

YL

2
PL

(

7
24
g21 +

27
8
g22 + 6g23

)

+YR

2
PR

(

13
6
g21 + 6g23

)]

Quark (down) ig1γµ 1√
2

1
16π2 ln

(

Λ
µ

)2
[

YL

2
PL

(

7
24
g21 +

27
8
g22 + 6g23

)

+YR

2
PR

(

2
3
g21 + 6g23

)]

SU(2)W gauge boson Lepton iI3g2γµ 1√
2

1
16π2 ln

(

Λ
µ

)2

PL

[

9
8
g21 − 33

8
g22
]

Z2 Quark iI3g2γµ 1√
2

1
16π2 ln

(

Λ
µ

)2

PL

[

1
8
g21 − 33

8
g22 + 6g23

]

SU(2)W gauge boson Lepton i g2√
2
γµ 1√

2

1
16π2 ln

(

Λ
µ

)2

PL

[

9
8
g21 − 33

8
g22
]

W2 Quark i g2√
2
γµ 1√

2

1
16π2 ln

(

Λ
µ

)2

PL

[

1
8
g21 − 33

8
g22 + 6g23

]

SU(3)c gauge boson Quark (up) ig3
λA

2
γµ 1√

2

1
16π2 ln

(

Λ
µ

)2
[

PL

(

1
8
g21 +

27
8
g22 − 11

2
g23
)

+PR

(

2g21 − 11
2
g23
)]

G2 Quark (down) ig3
λA

2
γµ 1√

2

1
16π2 ln

(

Λ
µ

)2
[

PL

(

1
8
g21 +

27
8
g22 − 11

2
g23
)

+PR

(

1
2
g21 − 11

2
g23
)]

fermions is generated at one loop from a diagram with level 1 KK particles running in the

loop. This effective coupling

−i
g√
2

(

δ̄m2
A2

m2
2

− 2
δ̄mf2

m2

)

ψ̄0γ
µT aP+ψ0A2µ

can be expressed in terms of the boundary contributions δ̄mn (see eq. (13)) to the one-loop

mass corrections [82]. The explicit form of this effective coupling is summarized in Table 2

for each different type of level 2 KK gauge boson and for the various possible SM fermion

pairs.

3. Model files

Having reviewed the MUED model, we are now in a position to describe its implementation

in CalcHEP and CompHEP. Each one of these programs gives its users an opportunity to

incorporate new physics in the already existing framework of the SM, MSSM, etc. To

La
m

bd
a*

R

La
m

bd
a*

R



Level 2: KK (dilepton) resonances 

FIG. 8: 5σ discovery reach for (a) γ2 and (b) Z2. We plot the total integrated luminosity L (in

fb−1) required for a 5σ excess of signal over background in the dielectron (red, dotted) or dimuon

(blue, dashed) channel, as a function of R−1. In each plot, the upper set of lines labelled “DY”

makes use of the single V2 production of Fig. 6 only, while the lower set of lines (labelled “All

processes”) includes indirect γ2 and Z2 production from n = 2 KK quark decays. The red dotted

line marked “FNAL” in the upper left corner of (a) reflects the expectations for a γ2 → e+e−

discovery at the Tevatron in Run II. The shaded area below R−1 = 250 GeV indicates the region

disfavored by precision electroweak data [31].

(red, dotted) or dimuon (blue, dashed) channel, as a function of R−1. In each panel in Fig. 8,

the upper set of lines labelled “DY” only utilizes the single V2 production cross-sections from

Fig. 6. The lower set of lines (labelled “All processes”) includes in addition indirect γ2 and

Z2 production from the decays of n = 2 KK quarks to γ2 and Z2 (we ignore secondary γ2

production from Q2 → Z2 → "2 → γ2). The shaded area below R−1 = 250 GeV indicates

the region disfavored by precision electroweak data [31]. Using the same cuts also for the

case of the Tevatron, we find the Tevatron reach in γ2 → e+e− shown in Fig. 8a and labelled

“FNAL”. For the Tevatron we use electron energy resolution ∆E/E = 0.01⊕0.16/
√

E [77].

The Tevatron reach in dimuons is worse due to the poorer resolution, while the reach for Z2

is also worse since mZ2
> mγ2

for a fixed R−1.

Fig. 8 reveals that there are good prospects for discovering level 2 gauge boson resonances

at the LHC. Already within one year of running at low luminosity (L = 10 fb−1), the LHC

will have sufficient statistics in order to probe the region up to R−1 ∼ 750 GeV. Notice that
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FIG. 7: Branching fractions of the n = 2 KK gauge bosons versus R−1: (a) g2, (b) Z2, (c) W±
2 ,

and (d) γ2.

n = 2 KK gauge bosons and confirmed that they are very small, hence we shall neglect them

in our analysis below.

In conclusion of this section, we discuss the experimental signatures of n = 2 KK gauge

bosons. To this end, we need to consider their possible decay modes. Having previously

discussed the different partial widths, it is straightforward to compute the V2 branching

fractions. Those are shown in Fig. 7(a-d). Again we observe that the branching fractions

are very weakly sensitive to R−1, just as the case of Figs. 3 and 4. This can be understood as

follows. The partial widths (3) and (4) for the KK number conserving decays are proportional

to the available phase space, while the partial width (6) for the KK number violating decay

is proportional to the mass corrections (see eq. (7)). Both the phase space and the mass

corrections are proportional to R−1, which then cancels out in the branching fraction.

Similarly to the case of n = 2 KK quarks discussed in Sec. IIIA, KK number conserving

20
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Level 2: KK (dilepton) resonances 

FIG. 9: The γ2 − Z2 diresonance structure in UED with R−1 = 500 GeV, for (a) the dimuon and

(b) the dielectron channel at the LHC with L = 100 fb−1. The SM background is shown with the

(red) continuous underlying histogram.

in the Minimal UED model, the “good dark matter” region, where the LKP relic density

accounts for all of the dark matter component of the Universe, is at R−1 ∼ 500 − 600 GeV

[39, 43, 44]. This region is well within the discovery reach of the LHC for both n = 1 KK

modes [2] and n = 2 KK gauge bosons (Fig. 8). If the LKP accounts for only a fraction of

the dark matter, the preferred range of R−1 is even lower and the discovery at the LHC is

easier.

From Fig. 8 we also see that the ultimate reach of the LHC for both γ2 and Z2, after

several years of running at high luminosity (L ∼ 300 fb−1), extends up to just beyond

R−1 = 1 TeV. One should keep in mind that the actual KK masses are at least twice as

large: mV2
∼ m2 = 2/R, so that the KK resonances can be discovered for masses up to 2

TeV.

While the n = 2 KK gauge bosons are a salient feature of the UED scenario, any such

resonance by itself is not a sufficient discriminator, since it resembles an ordinary Z ′ gauge

boson. If UED is discovered, one could then still make the argument that it is in fact some

sort of non-minimal supersymmetric model with an additional gauge structure containing

neutral gauge bosons. An important corroborating evidence in favor of UED would be the

simultaneous discovery of several, rather degenerate, KK gauge boson resonances. While

SUSY also can accommodate multiple Z ′ gauge bosons, there would be no good motivation
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SUSY vs UED

• SUSY-like cascade decays at the LHC from the first KK modes.

• Distinct feature: 2nd KK modes... 

SUSY: q̃

χ̃0
2

"̃∓
L

χ̃0
1

UED: Q1

Z1

"∓1

γ1

q

"± (near)

"∓ (far)

FIG. 10: Twin diagrams in SUSY and UED. The upper (red) line corresponds to the cascade decay

q̃ → qχ̃0
2 → q"±"̃∓L → q"+"−χ̃0

1 in SUSY. The lower (blue) line corresponds to the cascade decay

Q1 → qZ1 → q"±"∓1 → q"+"−γ1 in UED. In either case the observable final state is the same:

q"+"− /ET .

analogous decay chain Q1 → qZ1 → q!±!∓1 → q!+!−γ1 in UED [11, 12]. Both of these

processes are illustrated in Fig. 10.

FIG. 11: Lepton-quark invariant mass distributions in (a) UED with R−1 = 500 GeV and (b)

supersymmetry with a matching sparticle spectrum. We show separately the distributions with

the near and far lepton, and their sum. The positive (negative) charge leptons are shown in red

(blue).

Next, one forms the lepton-quark invariant mass distributions M!q (see Fig. 11). The

spin of the intermediate particle (Z1 in UED or χ̃0
2 in SUSY) governs the shape of the

distributions for the near lepton. However, in practice we cannot distinguish the near and

far lepton, and one has to include the invariant mass combinations with both leptons. This

tends to wash out the spin correlations, but a residual effect remains, which is due to the
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Spin and Couplings of Dark Matter:
Why is it difficult to measure them?

• Several alternative explanations:

• Missing energy signatures arise from something like:

Burns, Kong, Matchev, Park 2008



What is a good distribution to look at?
• Invariant mass distributions!
• Advantages: well studied, know about spin. 

For adjacent SM particles

– Plot versus m2!
– For an intermediate BSM particle of spin s, 

the highest order term is m4s

– For non-adjacent BSM particles, there are 
log terms as well.

• Disadvantage: know about many other things 
(hidden in the coefficients a), not all of which 
are measured!
– Masses MA, MB, MC, MD  (x,y,z)
– Couplings and mixing angles (gL and gR)
– Particle-antiparticle (D/D*) fraction (f/f*) (f

+f*=1)



What is the relevant question?
• Given the data, which spin configuration gives a good fit for 

arbitrary values of the yet unknown parameters?
– fix mass spectrum
– let spins, couplings, mixing angles, particle/antiparticle fraction f, etc. to float

• Previously people had asked: Given the data, which spin 
configuration gives a good fit for fixed values (the true ones) of the 
yet unknown parameters?
– They fix: everything but the spins
– Then let spins to float

• What is wrong with the latter approach?
– It’s the wrong chronological order
– To measure the chirality of the couplings, we will probably need to measure 

the spins first
– It’s not a pure spin measurement, i.e. it is a spin measurement under certain 

model assumptions which still need to be verified experimentally



How do we do it?

• Separate the spin dependence from all the rest
– Parameterize conveniently the effect from “all the rest”

• Measure both the spin (S) as well as all the rest:
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What is the method?
• Construct and then fit the three invariant mass distributions to



Coupling measurements
• The fitted values of alpha, 

beta, gamma represent 
measurements of certain 
combinations of couplings 
and mixing angles

• The sign ambiguity 
corresponds to the chirality 
exchange



Does this really make any difference?
• Yes! Dilepton invariant mass distribution. Data from SPS1a. 

• Spins vary
• Everything else fixed to SPS1a 

values 
• Easy to distinguish!

• Mass spectrum fixed to SPS1a 
values

• Everything else varies
• Difficult to distinguish!

Athanasiou, Lester, Smillie, Webber 06 Burns, Kong, Matchev, Park 08



Does this really make any difference?
• Yes! Lepton charge (Barr) asymmetry. Data: “UED” with SPS1a 

mass spectrum. 

• Spins vary
• Everything else fixed to SPS1a 

values 
• Easy to distinguish!

• Mass spectrum fixed to SPS1a 
values

• Everything else varies
• Difficult to distinguish!

Athanasiou, Lester, Smillie, Webber 06 Burns, Kong, Matchev, Park 08
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With Infinite Statistics
• Separate the spin dependence from all the rest

– Parameterize conveniently the effect from “all the rest”

• Measure both the spin (S) as well as all the rest:

Burns, Kong, Matchev, Park 08



KKDM in non-minimal modelDark matter in nonminimal UED
• The change in the cosmologically preferred value for R−1 as a result of varying

the different KK masses away from their nominal MUED values (along each line,
Ωh2 = 0.1)

(Kong, Matchev, hep-ph/0509119)

• In nonminimal UED, Cosmologically allowed LKP mass range can be larger

– If ∆ =
m1−mγ1

mγ1
is small, mLKP is large, UED escapes collider searches

→ But, good news for dark matter searches
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• Yellow: 4 leptons plus MET at 14 TeV LHC with 100 fb-1

• Green: relic abundance
Arrenberg, Baudis, Kong, Matchev, Yoo 2013

• Treat the LKP mass and mass splitting as free parameters.

• Gives a better chance for the LHC, and direct detection.

KK Dark Matter: complementarity



• Yellow: 4 leptons plus MET at 14 TeV LHC with 100 fb-1

• Green: relic abundance
Arrenberg, Baudis, Kong, Matchev, Yoo 2013

• Treat the LKP mass and mass splitting as free parameters.

• Gives a better chance for the LHC, and direct detection.

KK Dark Matter: complementarity

2

FIG. 1: Combined plot of the direct detection limit on the spin-independent cross section, the limit from
the relic abundance and the LHC reach for (a) �1 and (b) Z1, in the parameter plane of the LKP mass and
the mass splitting �q1 . The remaining KK masses have been fixed as in Ref. [4] and the SM Higgs mass
is mh = 125GeV. ⇤R = 20 is assumed. The black solid line accounts for all of the dark matter (100%)
and the two black dotted lines show 10% and 1%, respectively. The green band shows the WMAP/Planck
range, 0.117 < ⌦CDMh2 < 0.1204. The blue (red) solid line labelled by CDMS (XENON100) shows the
current limit of the experiment whereas the dashed and dotted lines represent projected limits of future
experiments. In the case of �1 LKP, a ton-scale experiment will rule out most of the parameter space while
there is little parameter space left in the case of Z1 LKP. The yellow region in the case of �1 LKP shows
parameter space that could be covered by the collider search in the 4` + /ET channel at the LHC with a
luminosity of 100 fb�1 [3].

draw attention once again to the lack of sensitivity at small �q1 : such small mass splittings are
quite problematic for collider searches. Current LHC exclusion limit (95% C.L. at 8 TeV) on R�1

is about 1250 GeV for ⇤R = 20 [6]. and this is shown as dotted (cyan) line. Horizontal lines at
� ⇠ 0.2 is the average mass splitting in MUED. To indicate roughly approximate boundary of the
exclusion, the slanted line around around 1 TeV is added assuming the shape of the boundary is
similar to one for 14 TeV reach.

In Fig. 1 we contrast the LHC reach with the relic density constraints [8, 9] and with the sen-
sitivity of direct detection experiments [10]. The green shaded region labelled by 100% represents
2� band, 0.117 < ⌦CDMh2 < 0.1204 [11] and the black solid line inside this band is the central
value ⌦CDMh2 = 0.1187. The region above and to the right of this band is ruled out since UED
would then predict too much dark matter. The green-shaded region is where KK dark matter is
su�cient to explain all of the dark matter in the universe, while in the remaining region to the
left of the green band the LKP can make up only a fraction of the dark matter in the universe.
We have indicated with the black dotted contours the parameter region where the LKP would
contribute only 10% and 1% to the total dark matter budget. Finally, the solid (CDMS [12] in
blue and XENON100 [13] in red) lines show the current direct detection limits, while the dotted
and dashed lines show projected sensitivities for future experiments 1.

1 Here and in the rest of the paper, when presenting experimental limits in an underdense or an overdense parameter
space region, we do not rescale the expected direct detection rates with the calculated relic density. The latter
is much more model-dependent, e.g. the mismatch with the relic abundance may be fixed by non-standard
cosmological evolution, having no e↵ect on the rest of our analysis.
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electroweak interactions are a few percent. We find that
the corrections to the masses are such that mgn

> mQn
>

mqn
> mWn

∼ mZn
> mLn

> m!n
> mγn

. The light-
est KK particle γ1, is a mixture of the first KK mode
B1 of the U(1)Y gauge boson B and the first KK mode
W 0

1 of the SU(2)W W 3 gauge boson. (The possibility of
the first level KK graviton being the LKP is irrelevant
for collider phenomenology, since the decay lifetime of γ1

to G1 would be of cosmological scales.) We will usually
denote this state by γ1. However, note that the corre-
sponding “Weinberg” angle θ1 is much smaller than the
Weinberg angle θW of the Standard Model [10], so that
the γ1 LKP is mostly B1 and Z1 is mostly W 0

1 . The mass
splittings among the level 1 KK modes are large enough
for the prompt decay of a heavier level 1 KK mode to a
lighter level 1 KK mode. But since the spectrum is still
quite degenerate, the ordinary SM particles emitted from
these decays will be soft, posing a challenge for collider
searches.

The terms localized at the orbifold fixed points also
violate the KK number by even units. However, assum-
ing that no explicit KK-parity violating effects are put
in by hand, KK parity remains an exact symmetry. The
boundary terms allow higher (n > 1) KK modes to decay
to lower KK modes, and even level states can be singly
produced (with smaller cross sections because the bound-
ary couplings are volume suppressed). Thus KK number
violating boundary terms are important for higher KK
mode searches as we will discuss in Section IV.

III. FIRST KK LEVEL

Once the radiative corrections are included, the KK
mass degeneracy at each level is lifted and the KK modes
decay promptly. The collider phenomenology of the first
KK level is therefore very similar to a supersymmetric
scenario in which the superpartners are relatively close
in mass - all squeezed within a mass window of 100-200
GeV (depending on the exact value of R). Each level
1 KK particle has an exact analogue in supersymmetry:
B1 ↔ bino, g1 ↔ gluino, Q1(q1) ↔ left-handed (right-
handed) squark, etc. The decay cascades of the level 1
KK modes will terminate in the γ1 LKP (Fig. 3). Just
like the neutralino LSP is stable in R-parity conserving
supersymmetry, the γ1 LKP in MUEDs is stable due to
KK parity conservation and its production at colliders
results in generic missing energy signals.

It is known that supersymmetry with a stable neu-
tralino LSP is difficult to discover at hadron colliders
if the superpartner spectrum is degenerate. Hence the
discovery of level 1 KK modes in MUEDs at first sight
appears problematic as well – the decay products result-
ing from transitions between level 1 KK states may be
too soft for reliable experimental observation at hadron
colliders. This issue is the subject of this Section.

Before we address the possible level 1 discovery chan-
nels in some detail, we need to determine the allowed

FIG. 3: Qualitative sketch of the level 1 KK spectroscopy de-
picting the dominant (solid) and rare (dotted) transitions and
the resulting decay product.

decays at level 1 and estimate their branching fractions.
For any given set of input parameters (3) the mass spec-
trum and couplings of the KK modes in MUEDs are
exactly calculable [10]. Hence one obtains very robust
predictions for the main branching ratios of interest for
phenomenology.

KK gluon.— The heaviest KK particle at level 1 is the
KK gluon g1. Its two-body decays to KK quarks Q1 and
q1 are always open and have similar branching fractions:
B(g1 → Q1Q0) $ B(g1 → q1q0) $ 0.5.

KK quarks.— The case of SU(2)-singlet quarks (q1)
is very simple – they can only decay to the hyper-
charge gauge boson B1, hence their branchings to Z1

are suppressed by the level 1 Weinberg angle θ1 % θW :
B(q1 → Z1q0) $ sin2 θ1 ∼ 10−2 − 10−3 while B(q1 →
γ1q0) $ cos2 θ1 ∼ 1. Thus q1 production yields jets
plus missing energy, the exception being t1 → W+

1 b0 and
t1 → H+

1 b0 (the latter will be in fact the dominant source
of H+

1 production at hadron colliders).
SU(2)-doublet quarks (Q1) can decay to W±

1 , Z1 or
γ1. In the limit sin θ1 % 1 SU(2)W -symmetry implies

B(Q1 → W±
1 Q′

0) $ 2B(Q1 → Z1Q0) (4)

and furthermore for massless Q0 we have

B(Q1 → Z1Q0)

B(Q1 → γ1Q0)
$

g2
2 T 2

3Q (m2
Q1

− m2
Z1

)

g2
1 Y 2

Q (m2
Q1

− m2
γ1

)
, (5)

where g2 (g1) is the SU(2)W (U(1)Y ) gauge coupling, and
T3 and Y stand for weak isospin and hypercharge, corre-
spondingly. We see that the Q1 decays to SU(2) gauge
bosons, although suppressed by phase space, are numeri-
cally enhanced by the ratio of the couplings and quantum
numbers. With typical values for the mass corrections
from Fig. 2, eqs. (4) and (5) yield B(Q1 → W±

1 Q′
0) ∼

65%, B(Q1 → Z1Q0) ∼ 33% and B(Q1 → γ1Q0) ∼ 2%.
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In figure 5 we summarize the decay patterns of (1,0) particles of the 6DSM in a pictorial
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(left in red) arising in both 5DSM and 6DSM, and the other (right in blue) that exists

only in the 6DSM. These additional states are all spinless adjoints that are lighter than

the B(1)
µ . One important consequence of this is that (1,0) fermions (circled) decay into

these spinless adjoints with non-negligible branching fractions, thus completely changing

the collider phenomenology.
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is suppressed due to the smaller hypercharge and larger mass of the (1,0) fermion, which

is L(1)
+ in this case. For the same reasons, the B(1)

µ decay into a B(1)
H and qq pairs has a

small decay width. B(1)
µ decays to W (1)

H plus fermion pairs are highly suppressed due to the

dependence on the 7th power of the small difference between initial and final (1,0) masses

[see Eqs. (C.12) and (C.18) in Appendix C].

Besides these tree-level 3-body decays, B(1)
µ also has 2-body decays via the dimension-5

operator shown in Eq. (2.11), which is induced at one loop (see Appendix B). The decay

width is given by

Γ
(

B(1)
µ → B(1)

H γ
)

=
α3

96π2 cos4θw

1

M
B

(1)
µ



1 −
M2

B
(1)
H

M2
B

(1)
µ





(

∑

F

σF

(YF

2

)2
QF EF

)2

, (3.5)

where the sum over F includes all quarks and leptons, σF is +1 for SU(2)W doublets and −1

for SU(2)W singlets, QF is the electric charge, YF is the hypercharge normalized to be twice

the electric charge for SU(2)W singlets, and EF is given in Eq. (B.10) and depends only on the

masses of B(1)
H , B(1)

ν , and of the (1,0) and (1,1) fermions. Using the values for the standard

model gauge couplings given at the end of section 2.2, i.e., α = 1/127 and sin2θw = 0.235, we

find the following branching fractions for B(1)
µ :

Br
(

B(1)
µ → B(1)

H γ
)

≡ bBγ ≈ 34.0% ,

Br
(

B(1)
µ → B(1)

H e+e−
)

≡ bBe ≈ 21.3% . (3.6)

The branching fractions into e+e−B(1)
H , µ+µ−B(1)

H and τ+τ−B(1)
H are equal. The fact that the

tree-level 3-body decay and the one-loop 2-body decay have comparable branching fractions

in the case of B(1)
µ is an accidental consequence of the mass spectrum given in Table 1. The

B(1)
µ decays into B(1)

H plus neutrinos or quarks have small branching fractions (1.4% and 0.6%,

respectively) which may be safely ignored in what follows.

The (1,0) leptons can decay into (1,0) modes of the electroweak gauge bosons or spinless

adjoints, and a standard model lepton. The decay widths of the SU(2)W -doublet (1,0) leptons,

L(1)
+ ≡ (N (1)

+ , E(1)
+ ), to neutral (1,0) particles are given at tree level by:

Γ
(

L(1)
+ → W (1)3

H lL
)

=
α

32 sin2θw
ML(1)



1 −
M2

W
(1)
H

M2
L(1)





2

,

Γ
(

L(1)
+ → B(1)

µ lL
)

=
α

16 cos2θw
ML(1)



1 −
M2

B
(1)
µ

M2
L(1)





2 

1 +
M2

L(1)

2M2
B

(1)
µ



 ,

Γ
(

L(1)
+ → B(1)

H lL
)

=
α

32 cos2θw
ML(1)



1 −
M2

B
(1)
H

M2
L(1)





2

, (3.7)
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F

f
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+

•

•
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f
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F
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Figure 16: The diagrams for 3-body decay of (1,0) particles. A2 and A1 are heavy bosons of spin 0
or 1, F is a heavier fermion, and f is a much lighter fermion.

where σF = ±1 when F has 6D chirality ±, and

EF =
∑

j,k;j′,k′

mj,k;j′,k′

F Jj,k;j′,k′

F , (B.8)

with JF given by an integral over a Feynman parameter:

Jj,k;j′,k′

F =

∫ 1

0

dx

x
ln









1 +

x(1 − x)

(

M2
B

(1)
ν

− M2
B

(1)
H

)

(1 − x)M2
F (j,k) + xM2

F (j′,k′) − x(1 − x)M2
B

(1)
ν









. (B.9)

The mj,k;j′,k′
quantities vanish unless the set of KK numbers (j, k; j′, k′) is given by

(1,0;1,1), (1,1;1,0) or (1,0; 0,0). This is a consequence of the vectorlike nature of the fermion

higher KK modes. Therefore,

EF = MF (1,0)

(

2J1,0;0,0
F + J1,0;1,1

F

)

+
√

2MF (1,1)J
1,1;1,0
F . (B.10)

Note that EF depends only on the (1,0) masses and on the masses of the (0,0) and (1,1)

fermions. The mass corrections for (1,1) fermions,
{

Q3
+, T−, Q1,2

+ , U1,2
− ,D1,2,3

− , L+ and E−

}

,

are given by
√

2/R multiplied by the coefficients {1.33, 1.31, 1.31, 1.27, 1.26, 1.05, 1.02} respec-

tively [5], ignoring electroweak symmetry breaking effects. Note also that in the limit that

all the fermions at each KK level are degenerate, EF becomes independent of F and so can

be taken out of the sum in Eq. (B.7), which then vanishes identically by anomaly cancella-

tion. This completes the computation of the amplitude for B(1)
ν → B(1)

H γ, which determines

the coefficient of the dimension-5 operator shown in Eq. (2.11), and the decay width of B(1)
ν

shown in Eq. (3.5).

Appendix C: Tree-level 3-body decays of (1,0) bosons

In this Appendix we compute the width for 3-body decays of (1,0) bosons. Let us consider a

generic 3-body decay of a boson A2 of mass M2 into a boson A1 of mass M1 and a fermion-

antifermion pair f f̄ , via an off-shell fermion F , of mass MF > M2 > M1. There are two
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B(1)
ν

B(1)
H

Aµ

F (j′,k′)

F (j,k)

F (j,k)

!
p !

p − p′

!
p′

"l

Figure 15: Dimension-5 operator induced by fermion loops.

Here we have defined

dj,k;j′,k′

nn′ = (−1)nδk′,k

(

δj′,j−1 + (−1)n
′
δj′,j+1

)

+ (−1)nδj′,j

(

δk′,k+1 + (−1)n
′
δk′,k−1

)

+ in
′−nδj,1δk′,0δj′,k + in+2n′

δj′,1δk,0δk′,j , (B.2)

where rj,k are complex phases,

rj,k =
j + ik

√

j2 + k2
(B.3)

and YF is the hypercharge of the fermion, normalized to −1 for lepton doublets. In the case

of fermions with 6D chirality −, which contain right-handed zero modes, the same formulas

apply with the PL and PR chirality projection operators interchanged.

Dimension-5 operators coupling a (1,0) vector boson to a (1,0) spinless adjoint and a

standard-model gauge boson are induced at one loop by the diagram in Figure 15, with

fermion KK modes running in the loop. The contribution of a fermion F+ to the amplitude

for B(1)
ν → B(1)

H γµ is given by

M
(

B(1)
ν → B(1)

H γµ

)

F+

= −
1

4

(

g′
YF+

2

)2

eQF+ ε∗µ(p − p′) εν(p) Iµν(j,k;j′,k′)
F+

, (B.4)

where

Iµν(j,k;j′,k′)
F+

=

∫

d4l

(2π)4
Tr

mj,k;j′,k′

F [l/γµ + γµ(l/ + p/ − p′/)] (l/ + p/) − mj′,k′;j,k
F l/γµ(l/ + p/ − p′/)

(

l2 − M2
F (j,k)

) [

(l + p − p′)2 − M2
F (j,k)

] [

(l + p)2 − M2
F (j′,k′)

] γνγ5

(B.5)

and

mj,k;j′,k′

F = MF (j,k) Re
[

rjk

(

dj,k;j′,k′

00 dj′,k′;j,k
01 − dj′,k′;j,k

10 dj,k;j′,k′

01

)]

. (B.6)

After integrating over the loop momentum l, and summing over fermions, we find the ampli-

tude

M
(

B(1)
ν → B(1)

H γµ

)

= −
g′2e

8π2
εµναβ

ε∗µ(p − p′)εν(p)pαp′β
M2

B
(1)
ν

− M2
B

(1)
H

∑

F

σF

(

YF

2

)2

QF EF , (B.7)
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as free parameters (determined by the underlying theory above Λ, which is not specified in

our framework). Furthermore, additional structures such as the Twin Higgs mechanism [15]

may be used to cancel the quadratic divergences in models with universal extra dimensions

[16], potentially affecting the (1,0) Higgs sector. We assume here that the (1,0) Higgs particles

are heavier than 1/R. In that case, the hadron collider phenomenology is mostly independent

of the exact (1,0) Higgs masses.

2.3 Loop-induced bosonic operators

In addition to lifting the degeneracy of the (1, 0) masses, loop corrections also contribute to the

following dimension-5 operators that are of particular interest for computing the branching

fractions of the (1, 0) bosons:

−
R

4

(

CBεµναβFµνB(1)
αβ B(1)

H + CGεµναβGµνB(1)
αβ G(1)

H

)

, (2.11)

where Fµν and Gµν are the field strengths of the photon and gluon, respectively, B(1)
αβ is the

field strength of the (1, 0) hypercharge vector boson B(1)
α , and B(1)

H is the U(1)Y spinless

adjoint. These operators account for the only significant 2-body decay channels open to the

level-1 KK modes G(1)
H and B(1)

µ . The analogous operator with the photon replaced by the Z

boson is less relevant because the corresponding decay width is phase-space suppressed. The

coefficients of the above dimension-5 operators are computed in Appendix B, with the result:

CB =
g′2e

8π2R

1

M2
B

(1)
ν

− M2
B

(1)
H

∑

F

σF

(YF

2

)2
QFEF , (2.12)

where σF = ±1 for a 6D fermion F of chirality ±, QF is the electric charge, YF is the

hypercharge normalized to be twice the electric charge for SU(2)W singlets and EF is a

function of the masses of B(1)
H , B(1)

ν , and of the (1,0) and (1,1) fermions given in Eq. (B.10).

CG is given by an analogous expression, but it is suppressed by the small mass difference

between the initial- and final-state (1, 0) bosons.

One might also naively expect higher-dimension operators of the form

Gµν∂µB(1)
H ∂νG(1)

H + Zµν∂
µB(1)

H ∂νW (1)3
H +

(

W+
µν∂

µB(1)
H ∂νW (1)−

H + H.c.
)

, (2.13)

to be generated, where W (1)
H is the level-1 SU(2)W spinless adjoint and Wµν and Zµν are

the standard model field strengths for the W and Z bosons. However, the first of these

terms is identically zero as can be seen after integrating by parts and using the gluon field

equation. By the same method one can see that the coefficients of the last two terms are

small, being proportional to (mW R)2, and furthermore the resulting decay widths for W (1)
H

are also phase-space suppressed.
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• KK photon is a not DM and decays to spinless photon via 1-loop 2 
body or tree-level 3 body decay (with vanishing BC at cutoff scale)



Figure 12: Cross sections for (a) mγ +n" + /ET events with n ≥ nmin for m = 1, 2 and 1 ≤ nmin ≤ 4
and (b) Lepton + photon events with two or more same-sign leptons, at the LHC as a function of
1/R.

fraction into B(1)
µ . In Fig. 13 we show typical diagrams for "+"+"+"−"− and γ"+"− signatures.

The rate for events with unusual combinations of final states: two same-sign leptons and

a photon, γ"+"+ (γ"−"−) for instance, or three same-sign and one opposite sign lepton,

"+"+"+"− ("−"−"−"+), are plotted in Fig. 12(b). The latter process consists of around 10%

of the total rate for 4 lepton events, and the largest single contribution to it is the decay

of U (1)
+ (D(1)

+ ) pairs. It arises only rarely in the standard model from W+W+Z (W−W−Z)

production.

We expect that the small standard model backgrounds for these processes can be elim-

inated by using a hard /ET cut in conjunction with a jet pT cut since the jets originating

from the decay of (1,0) colored particles should have a transverse momentum of the order

of their mass differences (∼ 100 GeV). One might also naively worry about triggering issues

due to the softness of leptons, since the cascade decays giving rise to them occur between

particles that are relatively degenerate in mass. A preliminary analysis on a single leg of the

decay chain keeping exact spin correlations suggests that more than 90 % of lepton pairs have

g
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+
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+

q′

q̄

W (1)+
µ
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Figure 13: Representative processes that lead to 5" + /ET and γ"+"− + /ET events. Several other
production mechanisms as well as cascade decays contribute to these and related signals.

– 22 –

Figure 11: Sum over cross sections for (1,0) particle pair production at the LHC times the branching
fractions of the cascade decays that give rise to n ≥ 3, 4, 5 or 6 charged leptons (! = e± or µ±), as a
function of the compactification scale.

values at large 1/R, which slightly underestimates the total number of events as branching

fractions are larger at small 1/R. Since the contribution from the third generation is small,

our approximation gives rise to negligible error.

Cross sections for multi-lepton events at the LHC are shown in Fig. 11 as a function

of 1/R. Out of the total number of events with 5 leptons or more at 1/R = 500 GeV, the

majority arise from first- and second- generation weak doublet quarks, either in pairs or in

association with other particles; W (1)
µ pair production is responsible for around 10%, as is

production including SU(3)c bosons, G(1)
µ,H . As parton distribution functions vary with the

size of the extra dimensions, so will the individual contributions, although the sensitivity to

the mass scale 1/R is small. The results shown in Fig. 11 include tree-level processes only.

We estimate that next-to-leading order effects will increase the cross sections by ∼30-50%,

especially due to initial state radiation. A complete analysis of this effect is warranted, but

is beyond the scope of this paper.

Also interesting are combined photon and lepton events which result from 1-loop decays

of the (1) hypercharge gauge boson B(1)
µ produced in the decay chain of U (1)

− quarks (see

Fig. 12(a)). Down-type quarks have smaller hypercharge and so couple less strongly; while

quark doublets couple more strongly to weak bosons, resulting in a negligible branching
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• The number of multi-lepton  events at 
14 TeV LHC

• No acceptance cuts

As mentioned earlier, W (1)
µ associated production, although small compared to that for

colored (1,0) particles, is not necessarily negligible because of its large branching fraction into

leptons. We have included the cross section for the channel with the largest production rate,

W (1)+
µ Q(1)

+ , in Fig. 10. The dominant contribution to this process is from production with

first generation (1,0) quarks. W (1)−
µ associated production is even smaller, by an extra factor

of ∼3, due to the partonic structure of the proton.

4.2 Events with leptons and photons at the LHC

Having determined the production rates of (1,0) particles, we now turn to a discussion of their

experimental signatures at the LHC. First we will consider the production of (1,0) particles

which give n!+ mγ + /ET with n ≥ nmin and 0 ≤ m ≤ 2, where we do not count leptons from

the decay of the standard model particles.

We calculate the inclusive cross sections for the channels n! + mγ + /ET with n ≥ nmin

and 0 ≤ m ≤ 2 in the following way. There are 11 (1,0) particles with different branching

fractions to multiple leptons as discussed in Section 3. We label these particles by A(1)
i , where

1 ≤ i ≤ 11 is the particle type:

A(1)
i =

(

W (1)
µ , G(1)

µ , G(1)
H , T (1)

+ , B(1)
+ , T (1)

− , U (1)
− ,D(1)

− , Q(1)
+

)

. (4.1)

Their branching fractions, Br(i, a, a′), where a is the number of leptons (0 ≤ a ≤ 4) and a′

is the number of photons (0 ≤ a′ ≤ 1), are given in Section 3. Q(1)
+ and U (1)

− include only

the first two generations of weak doublets and up-type singlets. One should keep in mind

that the 3rd generation KK quarks and KK quarks of the first two generations have different

branching fractions to leptons so they need to be tackled separately. For simplicity we use

the same symbol here for quarks and antiquarks. The cross section for n! + mγ + /ET events

with n ≥ nmin and 0 ≤ m ≤ 2 is

σ(pp → n! + mγ + /ET , n ≥ nmin) =
11
∑

i=1

11
∑

j≥i

σ(pp → A(1)
i A(1)

j )Bij , (4.2)

where Bij is a sum over products of branching fractions of the particles A(1)
i and A(1)

j

Bij =
4

∑

a,b=0
a+b≥nmin

1
∑

a′,b′=0
a′+b′=m

Br(i, a, a′)Br(j, b, b′) , (4.3)

Note that the total numbers of photons (m) and leptons (n) from the decay of a pair of (1,0)

particles are constrained by 0 ≤ n + 2m ≤ 8. It is not possible to obtain 8! + 2γ + /ET

for instance, since the hypercharge gauge boson B(1)
µ can decay into either a photon or a

fermion pair, together with B(1)
H , so a photon is only produced at the expense of two leptons.

Most (1,0) particles have branching fractions that are independent of 1/R. However, those

for third generation quarks have variations due to threshold effects (see Fig. 2). We use
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(

W (1)
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µ , G(1)
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+ , T (1)

− , U (1)
− ,D(1)
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+

)

. (4.1)
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1
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Figure 12: Cross sections for (a) mγ +n" + /ET events with n ≥ nmin for m = 1, 2 and 1 ≤ nmin ≤ 4
and (b) Lepton + photon events with two or more same-sign leptons, at the LHC as a function of
1/R.

fraction into B(1)
µ . In Fig. 13 we show typical diagrams for "+"+"+"−"− and γ"+"− signatures.

The rate for events with unusual combinations of final states: two same-sign leptons and

a photon, γ"+"+ (γ"−"−) for instance, or three same-sign and one opposite sign lepton,

"+"+"+"− ("−"−"−"+), are plotted in Fig. 12(b). The latter process consists of around 10%

of the total rate for 4 lepton events, and the largest single contribution to it is the decay

of U (1)
+ (D(1)

+ ) pairs. It arises only rarely in the standard model from W+W+Z (W−W−Z)

production.

We expect that the small standard model backgrounds for these processes can be elim-

inated by using a hard /ET cut in conjunction with a jet pT cut since the jets originating

from the decay of (1,0) colored particles should have a transverse momentum of the order

of their mass differences (∼ 100 GeV). One might also naively worry about triggering issues

due to the softness of leptons, since the cascade decays giving rise to them occur between

particles that are relatively degenerate in mass. A preliminary analysis on a single leg of the

decay chain keeping exact spin correlations suggests that more than 90 % of lepton pairs have
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Figure 13: Representative processes that lead to 5" + /ET and γ"+"− + /ET events. Several other
production mechanisms as well as cascade decays contribute to these and related signals.
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• The number of lepton + photon events (14 TeV)

Leptons and Photons from 2UED
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Many Variations
• MUED: Minimal Universal Extra Dimensions (cf. mSugra)

• 2UED: Two Universal Extra Dimensions (cf. GMSB)

• nUED: non-minimal Universal Extra Dimensions

• boundary terms

• SUED: Split Universal Extra Dimensions (cf. Split SUSY)

• bulk terms

• sUED: UED with singlet extension

• NMUED: Next-to-Minimal UED 

• (with boundary and bulk terms)

• Many others with larger gauge groups (cf. SU(2)L x SU(2)R )



1. The action S
5

which is invariant under the five dimensional Lorentz symmetry.

2. The boundary action Sbdy�(y � yi) where yi = (±)L denotes the location of the end

point. The boundary terms are invariant under the four dimensional sub-symmetry

of the full five dimensional Lorentz symmetry.

The fermion field content of the model (with a possible extension with the right handed

neutrino for the non-vanishing neutrino mass) is given with their charges under the gauge

symmetry as follows,
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where the superscript (0) denotes the zero mode of the Kaluza-Klein tower of the five

dimensional field. The bulk action is given by

S
5

=

Z

d4x

Z L

�L
dy [LV + L

 

+ LH + LY uk] , (2.2)

where
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G,W,B
X

A
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4
AMN · AMN (2.3)
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Q,U,D,L,E

X
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 !
DM�

M �M
 

  (2.4)

where A denotes the gluon (G), weak gauge bosons (W ) and the hypercharge gauge boson

(B) appearing in the gauge covariant derivatives DM = @M + ig5s� · GM + ig5w⌧ · WM +

ig5Y Y BM , where g5i s are five dimensional couplings of the SM, and �s and ⌧s are the

generators of SU(3)c and SU(2)W , respectively. The gauge group indices are suppressed.

 
 !
DM = 1

2

{ (DM ) � (DM ) }. The gamma matrix in five dimensions is �M =

(�µ, i�
5

), which satisfies {�A,�B} = 2⌘AB = 2diag(1,�1,�1,�1,�1). The bulk mass

term is chosen to be odd under the inversion about the middle point (y = 0) of the extra

dimension to keep the Kaluza-Klein parity preserved: M
 

(y) = �M
 

(�y).
The five dimensional Lagrangian for the Higgs and Yukawa interactions is

LH = (DMH)†DMH � V (H), (2.5)

V (H) = �µ2

5

|H|2 + �
5

|H|4 , (2.6)

LY uk = �E
5

LHE + �D
5

QHD + �U
5

QH̃D + h.c. , (2.7)
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still gets KK mode mixing the EW sector, unless rB = rW = rH . For simplicity, we

assume a common EW boundary parameter.

• In principle, one can introduce two bulk masses and two boundary terms for QCD

and EW sectors: rQ = rU = rD and rL = rE , and MQ = MU = MD and ML = ME .

For simplicity, in this article we assume universal parameters.

Summarizing, in what follows, we make the simplifying assumption of a universal boundary

parameter r ⌘ rQ,U,D,L,E = rG,W,B = rH,µ,� = r�U,D,E and a universal KK-odd fermion

bulk mass µ✓(y) = MQ,L = �MU,D,E where ✓(y) = 2H(y) � 1 is the step function where

H(y) is the Heaviside theta function. Therefore, the remaining free parameters are

L =
⇡R

2
: compactification scale , (2.13)

r : universal boundary parameter , (2.14)

µ : universal bulk mass . (2.15)

Generically one would expect, r ⇠ L and µ ⇠ L�1 ( rL ⇠ µL ⇠ O(1)), since they are

allowed by all symmetries of the model. The cuto↵ scale is also a parameter but as shown

in literature, the dependence on the cuto↵ in masses and couplings is usually logarithmic

and leads to subdominant e↵ects due to the low cuto↵ scale.

2.2 Kaluza-Klein Decomposition

In this section, we perform the Kaluza-Klein decomposition of the UED model with bound-

ary terms and fermion bulk masses. We apply the following standard procedure.

1. Derive the 5D equations of motion from the quadratic part of the action Eq. (2.2).

We do not include contributions from electroweak symmetry breaking in this step,

but treat them as corrections after the KK decomposition.

2. Separate the equations of motion into a xµ and a y dependent part.

3. Determine the wave functions and KK masses from the solutions to the y dependent

equation of motion (EOM) with the boundary conditions at y = ±L dictated by the

boundary action.

4. Determine the overall factor by canonically normalizing the KK mode kinetic terms.

Here we only summarize the results. The detailed calculation can be found in Appendix B.

A fermion  with a left-handed zero mode (i.e. Q and L) in the presence of a boundary

parameter r and a bulk mass M
 

= µ✓(y) is decomposed as follows.

 (x, y) =
1
X

n=0

⇣

 
(n)
L (x)f L

n (y) +  
(n)
R (x)f R

n (y)
⌘

, (2.16)
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where H̃ = i⌧
2

H⇤.

Now for each term in the bulk action, one can add KK-parity conserving boundary

terms, that are allowed by gauge invariance and 4 dimensional Lorentz symmetry:

Sbdy =

Z

d4x

Z L

�L
dy (L@V + L@ + L@H + L@Y uk) [�(y � L) + �(y + L)] , (2.8)

with

L@V =
G,W,B
X

A
�rA

4
Aµ⌫ · Aµ⌫ , (2.9)

L@ =
X

 =Q,L

ir
 

 LDµ�
µ L +

X

 =U,D,E

ir
 

 RDµ�
µ R, (2.10)

L@H = rH (DµH)†DµH + rµµ
2

5

|H|2 � r��5

|H|4 , (2.11)

L@Y uk = r�E�E
5

LHE + r�D�D
5

QHD + r�U�U
5

QH̃D + h.c. . (2.12)

As shown above, the general KK parity preserving 5D UED model contains a large

number of new parameters. Beyond the size L of the extra dimension, and the bulk parame-

ters gA, µ5

, �
5

, �U,D,E
5

– which in MUED can be directly expressed in terms of the standard

model parameters – the model includes five fermion bulk masses MQ,U,D,L,E , as well as the

boundary gauge parameters rG, rW , rB, the boundary Higgs parameters rH , rµ, r�, five

boundary fermion parameters rQ,U,D,L,E , and three boundary Yukawa couplings r�U,D,E ,

amounting to a total of 19 additional parameters. Studying the full parameter space is be-

yond the scope of this article, and we need an ansatz to reduce the number of parameters.

• First of all, above 19 parameters already assume absence of possible flavor changing

neutral current (FCNC). A priory, the fermion bulk masses, the fermion boundary

parameters and the boundary Yukawa couplings are matrices in flavor space. How-

ever, for generic choices, FCNCs are induced at tree-level (c.f. Ref.[7]) which are

strongly constrained by various experiments. As shown explicitly in Appendix A,

tree level FCNCs are absent if all M
 

, r
 

and r�U,D,E are chosen flavor-blind, which

reduces the number of free parameters in the fermion sector to 13.

• Di↵erent r�s in Eqs. (2.11)-(2.12) generate (flavor-conserving) mass mixing terms

between the di↵erent KK fermion modes from the Yukawa interactions. As their

e↵ects are negligible due to the Yukawa suppression, we already set them to be equal

at this stage.

• For rµ 6= r�, the bulk and boundary vacuum expectation values (VEV) do not co-

incide, which leads to a y-dependent VEV. This is a priori not excluded, but it

complicates the KK decomposition in the electroweak sector. For rµ = r� 6= rH , one

can do the KK decomposition of the Higgs field from the 5D Higgs kinetic term, but

in this case, the mass terms induced from the Higgs potential are not diagonal in

this KK basis. They induce mixing between the Higgs KK modes which requires to

re-diagonalize the basis, which is to be done numerically. Even for rH = rµ = r�, one
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still gets KK mode mixing the EW sector, unless rB = rW = rH . For simplicity, we

assume a common EW boundary parameter.

• In principle, one can introduce two bulk masses and two boundary terms for QCD

and EW sectors: rQ = rU = rD and rL = rE , and MQ = MU = MD and ML = ME .

For simplicity, in this article we assume universal parameters.

Summarizing, in what follows, we make the simplifying assumption of a universal boundary

parameter r ⌘ rQ,U,D,L,E = rG,W,B = rH,µ,� = r�U,D,E and a universal KK-odd fermion

bulk mass µ✓(y) = MQ,L = �MU,D,E where ✓(y) = 2H(y) � 1 is the step function where

H(y) is the Heaviside theta function. Therefore, the remaining free parameters are

L =
⇡R

2
: compactification scale , (2.13)

r : universal boundary parameter , (2.14)

µ : universal bulk mass . (2.15)

Generically one would expect, r ⇠ L and µ ⇠ L�1 ( rL ⇠ µL ⇠ O(1)), since they are

allowed by all symmetries of the model. The cuto↵ scale is also a parameter but as shown

in literature, the dependence on the cuto↵ in masses and couplings is usually logarithmic

and leads to subdominant e↵ects due to the low cuto↵ scale.

2.2 Kaluza-Klein Decomposition

In this section, we perform the Kaluza-Klein decomposition of the UED model with bound-

ary terms and fermion bulk masses. We apply the following standard procedure.

1. Derive the 5D equations of motion from the quadratic part of the action Eq. (2.2).

We do not include contributions from electroweak symmetry breaking in this step,

but treat them as corrections after the KK decomposition.

2. Separate the equations of motion into a xµ and a y dependent part.

3. Determine the wave functions and KK masses from the solutions to the y dependent

equation of motion (EOM) with the boundary conditions at y = ±L dictated by the

boundary action.

4. Determine the overall factor by canonically normalizing the KK mode kinetic terms.

Here we only summarize the results. The detailed calculation can be found in Appendix B.

A fermion  with a left-handed zero mode (i.e. Q and L) in the presence of a boundary

parameter r and a bulk mass M
 

= µ✓(y) is decomposed as follows.

 (x, y) =
1
X

n=0

⇣

 
(n)
L (x)f L

n (y) +  
(n)
R (x)f R

n (y)
⌘

, (2.16)
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where the wave functions f
 L/R
n are given by

n = 0 : f L
0

= N 

0

eµ|y|, (2.17)

odd n :

(

f L
n = N 

n sin(kny) ,

f R
n = N 

n

⇣

� kn
mfn

cos(kny) +
µ

mfn
✓(y) sin(kny)

⌘

,
(2.18)

even n :

(

f L
n = N 

n

⇣

kn
mfn

cos(kny) +
µ

mfn
✓(y) sin(kny)

⌘

,

f R
n = N 

n sin(kny) .
(2.19)

The wave numbers kn are the solutions of the mass quantization condition

kn cos(knL) = (r (mfn)
2 + µ) sin(knL) for odd n ,

rkn cos(knL) = �(1 + rµ) sin(knL) for even n ,
(2.20)

and the masses mfn of the KK fermions follow from the wave numbers by

mfn =
p

k2n + µ2, (2.21)

while the chiral zero mode is massless. The normalizations

N 

n =

8

>

>

>

>

<

>

>

>

>

:

q

µ
(1+2r µ) exp(2µL)�1

for n = 0 ,
1q

L� cos(knL) sin(knL)

kn
+2r sin2(knL)

for odd n ,

1q
L� cos(knL) sin(knL)

kn

for even n ,

(2.22)

are determined from the modified orthogonality relations
Z L

�L
dy f L

m f L
n [1 + r (�(y + L) + �(y � L)] = �mn,

Z L

�L
dy f R

m f R
n = �mn. (2.23)

A fermion with a right-handed zero mode (i.e. U,D,E) yields analogous results when

replacing µ with �µ (see Appendix B.3 for details). 1

As has been pointed out in Ref. [20], in the absence of a bulk mass term, negative

boundary parameters lead to a KK spectrum which, depending on the value of r, contain

ghosts and/or tachyons. In the presence of a bulk mass term, we arrive at the same

conclusion (see Appendix B.2 for details), and therefore demand r > 0, for which neither

ghosts nor tachyons are present.

The KK reduction of gauge bosons and scalars has been discussed in Ref. [21]. The

fields are decomposed according to

Aµ(x, y) =
1
X

n=0

A(n)
µ (x)fA

n (y) , (2.24)

H(x, y) =
1
X

n=0

H(n)(x)fA
n (y) . (2.25)

1

As we defined our bulk mass term as µ✓(y) = MQ.L = �MU,D,E , the KK masses of the SU(2)-doublet

and -singlet fields are equal (up to corrections from electroweak symmetry breaking), and in this sense, this

choice leads to a “universal” bulk mass.
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The wave numbers kn are the solutions of the mass quantization condition

kn cos(knL) = (r (mfn)
2 + µ) sin(knL) for odd n ,

rkn cos(knL) = �(1 + rµ) sin(knL) for even n ,
(2.20)

and the masses mfn of the KK fermions follow from the wave numbers by

mfn =
p

k2n + µ2, (2.21)

while the chiral zero mode is massless. The normalizations

N 

n =

8

>

>

>

>

<

>

>

>

>

:

q
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kn
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(2.22)

are determined from the modified orthogonality relations
Z L

�L
dy f L

m f L
n [1 + r (�(y + L) + �(y � L)] = �mn,

Z L

�L
dy f R

m f R
n = �mn. (2.23)

A fermion with a right-handed zero mode (i.e. U,D,E) yields analogous results when

replacing µ with �µ (see Appendix B.3 for details). 1

As has been pointed out in Ref. [20], in the absence of a bulk mass term, negative

boundary parameters lead to a KK spectrum which, depending on the value of r, contain

ghosts and/or tachyons. In the presence of a bulk mass term, we arrive at the same

conclusion (see Appendix B.2 for details), and therefore demand r > 0, for which neither

ghosts nor tachyons are present.

The KK reduction of gauge bosons and scalars has been discussed in Ref. [21]. The

fields are decomposed according to

Aµ(x, y) =
1
X

n=0

A(n)
µ (x)fA

n (y) , (2.24)

H(x, y) =
1
X

n=0

H(n)(x)fA
n (y) . (2.25)

1

As we defined our bulk mass term as µ✓(y) = MQ.L = �MU,D,E , the KK masses of the SU(2)-doublet

and -singlet fields are equal (up to corrections from electroweak symmetry breaking), and in this sense, this

choice leads to a “universal” bulk mass.
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A fermion with a right-handed zero mode (i.e. U,D,E) yields analogous results when
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1
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choice leads to a “universal” bulk mass.

– 7 –

Fermions



Bosons

where the wave functions f
 L/R
n are given by

n = 0 : f L
0

= N 

0

eµ|y|, (2.17)

odd n :

(

f L
n = N 

n sin(kny) ,

f R
n = N 

n

⇣

� kn
mfn

cos(kny) +
µ

mfn
✓(y) sin(kny)

⌘

,
(2.18)

even n :

(

f L
n = N 

n

⇣

kn
mfn

cos(kny) +
µ

mfn
✓(y) sin(kny)

⌘

,

f R
n = N 

n sin(kny) .
(2.19)

The wave numbers kn are the solutions of the mass quantization condition

kn cos(knL) = (r (mfn)
2 + µ) sin(knL) for odd n ,

rkn cos(knL) = �(1 + rµ) sin(knL) for even n ,
(2.20)

and the masses mfn of the KK fermions follow from the wave numbers by

mfn =
p

k2n + µ2, (2.21)

while the chiral zero mode is massless. The normalizations

N 

n =

8

>

>

>

>

<

>

>

>

>

:

q

µ
(1+2r µ) exp(2µL)�1

for n = 0 ,
1q

L� cos(knL) sin(knL)

kn
+2r sin2(knL)

for odd n ,

1q
L� cos(knL) sin(knL)

kn

for even n ,

(2.22)

are determined from the modified orthogonality relations
Z L

�L
dy f L

m f L
n [1 + r (�(y + L) + �(y � L)] = �mn,

Z L

�L
dy f R

m f R
n = �mn. (2.23)

A fermion with a right-handed zero mode (i.e. U,D,E) yields analogous results when

replacing µ with �µ (see Appendix B.3 for details). 1

As has been pointed out in Ref. [20], in the absence of a bulk mass term, negative

boundary parameters lead to a KK spectrum which, depending on the value of r, contain

ghosts and/or tachyons. In the presence of a bulk mass term, we arrive at the same

conclusion (see Appendix B.2 for details), and therefore demand r > 0, for which neither

ghosts nor tachyons are present.

The KK reduction of gauge bosons and scalars has been discussed in Ref. [21]. The

fields are decomposed according to
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X
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1

As we defined our bulk mass term as µ✓(y) = MQ.L = �MU,D,E , the KK masses of the SU(2)-doublet

and -singlet fields are equal (up to corrections from electroweak symmetry breaking), and in this sense, this
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For a uniform boundary kinetic term as considered in this article, the resulting wave func-

tions are2

n = 0 : fA
0

(y) =
1

p

2L(1 + r
L)

(2.26)

odd n : fA
n (y) =

s

1

L+ r sin2(knL)
sin(kny) , (2.27)

even n : fA
n (y) =

s

1

L+ r cos2(knL)
cos(kny) , (2.28)

where the wave numbers kn are determined by

cot(knL) = rkn for odd n, (2.29)

tan(knL) = �rkn for even n ,

and the corresponding KK masses are

m�n = kn . (2.30)

The wave functions satisfy the orthogonality relation

Z L

�L
dyfA

mfA
n [1 + r (�(y + L) + �(y � L))] = �mn. (2.31)

As expected, the masses and wave functions of KK scalars and gauge bosons are identical

to the masses and Z
2

-even fermion wave function solutions in the limit µ ! 0 (up to EWSB

e↵ects).

We close our discussion on the KK decomposition with an illustration of the dependence

of the KK masses on the fermion bulk mass and the boundary parameter shown in Fig.1.

These masses directly follow from Eqs. (2.20-2.21). In the left panel, we plot masses of the

first and second KK fermions, mf
1

and mf
2

, as a function of the dimensionless ratio r/L

for di↵erent values of the dimensionless parameter µL. For µL = 0, these masses coincide

with the first and second gauge KK mode masses m�
1

and m�
2

. As can be seen, all KK

masses decrease with increasing boundary parameter, while the bulk mass µ e↵ects the

first and second KK modes in opposite ways. While the first KK mode mass is increased

for negative µ, the second KK mode mass is decreased in this case – at least for su�ciently

large r/L. This non-trivial behavior is a consequence of the di↵erent mass quantization

conditions Eq. (2.20) for even- and odd-numbered KK modes and can be seen in more

detail in the right panel of Fig. 1, where we plot contours of constant mf
1

and mf
2

in

the r/L vs. µL parameter space. For illustration, we chose a compactification radius

R�1 ⌘ 2L/⇡ = 500GeV in both figures, but the masses for other compactification radii

can easily be deduced, because, as can be seen from Eq. (2.20), the product mfnL can

be expressed as a function of the dimensionless parameters r/L and µL, only. In some of

2

For generic choices of the boundary parameters, the KK decomposition in the electroweak sector is

more involved. For a detailed discussion and the general solutions, we refer to Ref. [21].
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NMUED: tree-level spectrum

• “r” decreases masses of KK bosons and KK fermions

• “mu” increases masses of KK fermions (demand:  mu < 0)

• No loop corrections --> no dependence on cutoff

L=pi*R/2
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Couplings

Figure 1. KK masses at level-1 and level-2 for R�1 = 500GeV.

the parameter space of Fig. 1, the first KK mode of the fermions is given by hyperbolic

solutions rather than trigonometric solutions (c.f. Appendix B.2, and Fig. 6 for details).

The hyperbolic solutions are taken into account in Fig. 1 as well as in our phenomenological

studies in Sec. 3, but in the phenomenologically viable parameter space identified in Fig. 5,

only trigonometric solutions exist.

2.3 Couplings between KK modes and SM modes

With the KK decomposition for the fields at hand, we can determine the underlying 5D

parameters in terms of the standard model masses and couplings, which in turn fixes all

masses of KK modes and their couplings.

As an example, let us consider the matching of the 4D and 5D gauge couplings. The

standard model gauge couplings have to be identified with the couplings of the zero mode

fermions to the zero mode gauge bosons which are determined by entering the KK decom-

positions into the 5D action Eq. (2.2) and integrating over the extra dimension:

Seff �
Z

d4x ig5A 
(0)

L/R
/A(0)

 
(0)

L/R

Z L

�L
dyfA

0

f
 L/R

0

f
 L/R

0

[1 + r (�(y + L) + �(y � L))]

=

Z

d4x i
g5A
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Figure 1. KK masses at level-1 and level-2 for R�1 = 500GeV.
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where in the last step, we used the orthogonality relation Eq. (2.31), and diagonalized the

mass matrix in the neutral sector, which yields the mass eigenstates
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where ✓W is the standard model Weinberg angle. Note that inclusion of radiative correction

reduces the Weinberg angle for KK states [22]. Together with the mass contributions from

the KK decomposition, the full masses of the gauge boson KK modes are given by

mAn =
q
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A
0

, (2.39)

where here, A denotes the gluon, photon, Z-, and W -boson, and mA
0

is the mass of the

respective standard model particle. Similarly to the gauge sector, the Yukawa interactions

yield additional mass contributions to the KK fermions beyond mfn from Eq. (2.21). The

resulting fermion KK masses are given by

m
 n =

q

m2

fn
+m2

 

, (2.40)
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where m
 

denotes the respective standard model quark and lepton masses.3

The couplings of Kaluza-Klein mode particles are determined from overlap integrals

of the corresponding wave functions. KK parity guarantees the absence of any KK parity

violating interactions. Furthermore, the orthogonality relations guarantee that several

couplings are absent (for example KK number violating couplings of fermions to a zero

mode gauge boson) or equal to the analogous standard model couplings (for example the

coupling between a zero mode gauge boson and two n-mode fermions or the coupling

between two Higgs zero modes and two n-mode gauge bosons).

Other couplings are modified, compared to minimal UED. The KK number preserving

couplings

gA
110

= g5A

Z

dy [1 + r (�(y + L) + �(y � L)] fA
1

f L
1

f L
0

⌘ gAF
110

, (2.41)

between a zero mode fermion and a one-mode fermion and gauge boson play the dominant

role in dark matter annihilation as well as for the production of KK particle pairs and

their cascade decays into the LKP at LHC. For MUED (at tree level), these couplings are

equal to the corresponding standard model couplings. As can be seen in the left panel of

Fig. 2, which shows the ratio gA
110

/gA as a function of µL and r/L, the couplings remain

equal to the standard model value if no fermion bulk mass term is present (and under

the assumption of equal fermion and gauge boundary kinetic terms). This directly follows

from the orthogonality relations Eq. (2.31) and the fact that for µ = 0, the wave functions

of the KK-fermions and gauge bosons coincide. For general µ, however, we observe O(1)

deviations from the standard model couplings. In the usually discussed MUED model,

deviations from the standard model couplings are one-loop suppressed.

The KK number conserving couplings

gA
220

= g5A

Z

dy [1 + r (�(y + L) + �(y � L)] fA
2

f L
2

f L
0

⌘ gAF
220

, (2.42)

between a 2-mode gauge boson and fermion and a zero mode fermion, and

gA
211

= g5A

Z

dy [1 + r (�(y + L) + �(y � L)] fA
2

f L
1

f L
1

⌘ gAF
211

, (2.43)

between a two 1-mode fermions and a 2-mode gauge boson are also shown in Fig. 2. Both

contribute potential decay channels of the 2-mode gauge boson.

Apart from KK number conserving couplings, the KK number violating couplings

gA
200

= g5A

Z

dy [1 + r (�(y + L) + �(y � L)] fA
2

f L
0

f L
0

⌘ gAF
200

, (2.44)

between two zero mode fermions and a level-2 KK mode gauge boson play an important role

for collider phenomenology. Via these couplings, 2-mode gauge bosons can be produced as

an s-channel resonance, which implies Z 0-, W 0- or coloron-like signatures. In MUED, these

3

The details about the Yukawa contribution to the KK fermion masses and the relation between the

gauge- and the mass eigenbasis for KK quarks and leptons can be found in Appendix D.
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Figure 2. Modified KK couplings: V1f1f0 (top-left), V2f2f0 (top-right), V2f1f1 (bottom-left), and
V2f0f0 (bottom-right).

couplings are only induced at one-loop level and therefore small [22], but still potentially

observable at LHC when upgraded to 14TeV [26]. As can be seen in the right panel of

Fig. 2, for our generalized UED setup, the coupling is absent only for µ = 0 – again due

to coinciding fermion and gauge boson wave functions and the orthogonality relations. For

generic µ, gA
200

is of the order of the corresponding standard model coupling. Therefore,

resonance searches are amongst the most sensitive tests of generalized UED models. We

find that dependence on the brane parameter r is weak in F
110

and F
200

and we expect

that they may be less constrained by experiments. On the other hand, variation of F
220

and F
211

along the r direction is more dramatic.

3 Constraints on Generalized UED Models

In this section, we consider various constraints on the generalized UED model in the pres-

ence of bulk masses and brane localized terms.

– 12 –
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B Non-universal case III RELIC ABUNDANCE

FIG. 1: KK photon mass contours in the universal case across allowed parameter space by collider

constraints. All points are consistent with ⌦mh2 = 0.11.

the hadronic sector and µL is for the leptonic sector. Since the boundary terms are zero,

all boson masses are n/R and fermions become heavier than KK bosons. For a given µQ,

µL, R�1 can be fixed by relic abundance. This set up naturally leads to an interesting

branching fractions for appropriate explanation of astronomical observations. Branching

fractions and the KK photon mass are shown in Fig. 6. As expected in large µQ region,

branching fractions of KK photon annihilation into jj are suppressed, while in small µL

region, branching fractions into leptons are enhanced.

Since a large µ increases the coupling between level-2 KK gauge bosons and the SM

fermion pair, both dijet and dilepton limits become important, and this has been investigated

in Ref. [9]. Yellow-shaded region are allowed by LHC data with 1fb�1 at 7 TeV. Large

µL > �1.5 is cut o↵ by oblique correction. LHC exclusion for �1.5µLL < �0.3 is due to

the dilepton search and exclusion for �0.3 < µLL < 0 is due to the dijet search. We expect

that analysis with full data set at 7+8 TeV will further constrain the parameter space.

Scenario II: µEW = 0 = rQ.

In this scenario we consider vanishing bulk and boundary terms in the electroweak sector,

µEW = 0 = rQ. Remaining three parameters are µQ and rL, and R�1. Similarly to the

previous case, a (µQ, rL) fixes R�1 andmLKP from relic abundance calculation. As expected,

in a large µQ, branching fractions to the jj final states are suppressed as shown in Fig. 6.

8

Kong, Marfatia, Gao, preliminary
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3

FIG. 1: Predicted spin-dependent proton cross sections (dark-
shaded, blue), along with the projected sensitivity of a 100
kg NAIAD array [14]; and predicted spin-independent pro-
ton cross sections (light-shaded, red), along with the current
EDELWEISS sensitivity [15], and projected sensitivities of
CDMS [16], GENIUS [17], and CRESST [18]. (The CRESST
projection is long-term and conditional upon increased expo-
sure and improved background rejection.) The predictions are
for mh = 120 GeV and 0.01 ≤ r = (mq1 − mB1)/mB1 ≤ 0.5,
with contours for specific intermediate r labeled.

is compensated in large nuclei where spin-independent
rates are enhanced by ∼ A2. In the case of bosonic KK
dark matter, the latter effect dominates, and the spin-
independent experiments have the best prospects for de-
tection, with sensitivity to mB1 far above current limits.

Dark matter may also be detected when it annihilates
in the galactic halo, leading to positron excesses in space-
based and balloon experiments. The positron flux is [19]

dΦe+

dΩdE
=

ρ2

m2
B1

∑

i

〈σiv〉B
i
e+

∫

dE0fi(E0)G(E0, E) , (12)

where ρ is the local dark matter mass density, the sum
is over all annihilation channels i, and Bi

e+ is the e+

branching fraction in channel i. The initial positron en-
ergy distribution is given by f(E0), and the Green func-
tion G(E0, E) propagates positrons in the galaxy.

Several channels contribute to the positron flux. Here
we focus on the narrow peak of primary positrons
from direct B1B1 → e+e− annihilation. (Annihilation
to muons, taus and heavy quarks also yield positrons
through cascade decays, but with relatively soft and
smeared spectra.) In this case, the source is monoen-
ergetic, and Eq. (12) simplifies to

dΦe+

dΩdE
= 2.7 × 10−8cm−2s−1sr−1GeV−1 〈σeev〉

pb

×

[

ρ

0.3 GeV/cm3

]2 [

1 TeV

mB1

]2

g

(

1,
E

mB1

)

, (13)

FIG. 2: Predicted positron signals (dark shaded) above back-
ground (light shaded) as a function of positron energy for
mB1 = me1

L
= me1

R
= 100, 500, 750, and 1000 GeV.

where the annihilation cross section is

〈σeev〉 =
e4

9π cos4 θW

[

Y 4
e1

L

m2
B1 + m2

e1
L

+ (L → R)

]

, (14)

and the reduced Green function g is as in Ref. [20].
Positron spectra and an estimated background (model

C from Ref. [19]) are given in Fig. 2. The sharp peak at
Ee+ = mB1 is spectacular — while propagation broad-
ens the spectrum, the mono-energetic source remains ev-
ident. This feature is extremely valuable, as the back-
ground, although resulting from many sources, should be
smooth. Maximal Ee+ also enhances detectability since
the background drops rapidly with energy. Both of these
virtues are absent for neutralinos, where Majorana-ness
implies helicity-suppressed annihilation amplitudes, and
positrons are produced only in cascades, leading to soft,
smooth spectra [21]. A peak in the e+ spectrum will not
only be a smoking gun for B1 dark matter, it will also
exclude neutralinos as the source.

Of the many positron experiments, the most promis-
ing is AMS [22], the anti-matter detector to be placed
on the International Space Station. AMS will distin-
guish positrons from electrons even at 1 TeV energies [23].
With aperture 6500 cm2sr and a runtime of 3 years, AMS
will detect ∼ 1000 positrons with energy above 500 GeV,
and may detect a positron peak from B1 dark matter.

Photons from dark matter annihilation in the center of
the galaxy also provide an indirect signal. The line signal
from B1B1 → γγ is loop-suppressed, and so we consider
continuum photon signals. The integrated photon flux
above some photon energy threshold Eth is [20]

Φγ(Eth) = 5.6 × 10−12 cm−2 s−1J̄(∆Ω)∆Ω

×

[

1 TeV

mB1

]2
∑

q

〈σqqv〉

pb

∫ mB1

Eth

dE
dN q

γ

dE
, (15)

Cheng, Feng, Matchev 2002
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B As Cosmic e± source IV ASTROPHYSICAL PROSPECTS

the astrophysical electrons as well as three parameters that describes the particle di↵usion

coe�cient inside the galactic magnetic field. For details of our parametrization, see Ref. [33].
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FIG. 5: The max. allowed BRH/BRL, Assuming the leptonic channels account for the e+ excess,

PAMELA’s antiproton bound gives an upper limit for hadronic channels.

We illustrate one best-fit example at a fixed dark matter mass in Fig. 4. The variance

in the astrophysical background can lower the galactic e± flux so that the combined galac-

tic+DM flux fits the AMS2 results [24].

For each mass of the dark matter (KK photon), the preferred BF· hv�i is obtained by

fitting to AMS2 data, and can be parametrized as

BRL · BF hv�i = �17.6
⇣ mDM

1 TeV

⌘2

+ 130
⇣ mDM

1 TeV

⌘
+ 169 pb (26)

for 0.6 TeV < mDM < 4 TeV

where BRL =
P

l=e,µ,⌧ BRl+l� is the sum of branching fractions into charged leptons. Due

to the fact that antiprotons constrain BRH to be much smaller than BRL, we ignore the e±

from hadronic channels.

Combining Eq. 25 and 26, we can impose a maximal BRH/BRL at each dark matter

mass, for not over-producing antiprotons while the e± explains the positron excess. We find

for our KK scenarios, such limit is at 3⇠4% of the leptonic branching ratio, as shown in

Fig. 5. We use this BRH/BRL in our scans of the non-universal Scenario I and II, and the

results are plotted in Fig. 6, where the regions that satisfy the BRH/BRL and LHC dilepton

searches are separately shaded. Interestingly we found no overlap between to two allowed
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FIG. 1: KK photon mass contours in the universal case across allowed parameter space by collider

constraints. All points are consistent with ⌦mh2 = 0.11.

the hadronic sector and µL is for the leptonic sector. Since the boundary terms are zero,

all boson masses are n/R and fermions become heavier than KK bosons. For a given µQ,

µL, R�1 can be fixed by relic abundance. This set up naturally leads to an interesting

branching fractions for appropriate explanation of astronomical observations. Branching

fractions and the KK photon mass are shown in Fig. 6. As expected in large µQ region,

branching fractions of KK photon annihilation into jj are suppressed, while in small µL

region, branching fractions into leptons are enhanced.

Since a large µ increases the coupling between level-2 KK gauge bosons and the SM

fermion pair, both dijet and dilepton limits become important, and this has been investigated

in Ref. [9]. Yellow-shaded region are allowed by LHC data with 1fb�1 at 7 TeV. Large

µL > �1.5 is cut o↵ by oblique correction. LHC exclusion for �1.5µLL < �0.3 is due to

the dilepton search and exclusion for �0.3 < µLL < 0 is due to the dijet search. We expect

that analysis with full data set at 7+8 TeV will further constrain the parameter space.

Scenario II: µEW = 0 = rQ.

In this scenario we consider vanishing bulk and boundary terms in the electroweak sector,

µEW = 0 = rQ. Remaining three parameters are µQ and rL, and R�1. Similarly to the

previous case, a (µQ, rL) fixes R�1 andmLKP from relic abundance calculation. As expected,

in a large µQ, branching fractions to the jj final states are suppressed as shown in Fig. 6.
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FIG. 1: Predicted spin-dependent proton cross sections (dark-
shaded, blue), along with the projected sensitivity of a 100
kg NAIAD array [14]; and predicted spin-independent pro-
ton cross sections (light-shaded, red), along with the current
EDELWEISS sensitivity [15], and projected sensitivities of
CDMS [16], GENIUS [17], and CRESST [18]. (The CRESST
projection is long-term and conditional upon increased expo-
sure and improved background rejection.) The predictions are
for mh = 120 GeV and 0.01 ≤ r = (mq1 − mB1)/mB1 ≤ 0.5,
with contours for specific intermediate r labeled.

is compensated in large nuclei where spin-independent
rates are enhanced by ∼ A2. In the case of bosonic KK
dark matter, the latter effect dominates, and the spin-
independent experiments have the best prospects for de-
tection, with sensitivity to mB1 far above current limits.

Dark matter may also be detected when it annihilates
in the galactic halo, leading to positron excesses in space-
based and balloon experiments. The positron flux is [19]

dΦe+

dΩdE
=

ρ2

m2
B1

∑

i

〈σiv〉B
i
e+

∫

dE0fi(E0)G(E0, E) , (12)

where ρ is the local dark matter mass density, the sum
is over all annihilation channels i, and Bi

e+ is the e+

branching fraction in channel i. The initial positron en-
ergy distribution is given by f(E0), and the Green func-
tion G(E0, E) propagates positrons in the galaxy.

Several channels contribute to the positron flux. Here
we focus on the narrow peak of primary positrons
from direct B1B1 → e+e− annihilation. (Annihilation
to muons, taus and heavy quarks also yield positrons
through cascade decays, but with relatively soft and
smeared spectra.) In this case, the source is monoen-
ergetic, and Eq. (12) simplifies to

dΦe+

dΩdE
= 2.7 × 10−8cm−2s−1sr−1GeV−1 〈σeev〉

pb

×

[

ρ

0.3 GeV/cm3

]2 [

1 TeV

mB1

]2

g

(

1,
E

mB1

)

, (13)

FIG. 2: Predicted positron signals (dark shaded) above back-
ground (light shaded) as a function of positron energy for
mB1 = me1

L
= me1

R
= 100, 500, 750, and 1000 GeV.

where the annihilation cross section is

〈σeev〉 =
e4

9π cos4 θW

[

Y 4
e1

L

m2
B1 + m2

e1
L

+ (L → R)

]

, (14)

and the reduced Green function g is as in Ref. [20].
Positron spectra and an estimated background (model

C from Ref. [19]) are given in Fig. 2. The sharp peak at
Ee+ = mB1 is spectacular — while propagation broad-
ens the spectrum, the mono-energetic source remains ev-
ident. This feature is extremely valuable, as the back-
ground, although resulting from many sources, should be
smooth. Maximal Ee+ also enhances detectability since
the background drops rapidly with energy. Both of these
virtues are absent for neutralinos, where Majorana-ness
implies helicity-suppressed annihilation amplitudes, and
positrons are produced only in cascades, leading to soft,
smooth spectra [21]. A peak in the e+ spectrum will not
only be a smoking gun for B1 dark matter, it will also
exclude neutralinos as the source.

Of the many positron experiments, the most promis-
ing is AMS [22], the anti-matter detector to be placed
on the International Space Station. AMS will distin-
guish positrons from electrons even at 1 TeV energies [23].
With aperture 6500 cm2sr and a runtime of 3 years, AMS
will detect ∼ 1000 positrons with energy above 500 GeV,
and may detect a positron peak from B1 dark matter.

Photons from dark matter annihilation in the center of
the galaxy also provide an indirect signal. The line signal
from B1B1 → γγ is loop-suppressed, and so we consider
continuum photon signals. The integrated photon flux
above some photon energy threshold Eth is [20]

Φγ(Eth) = 5.6 × 10−12 cm−2 s−1J̄(∆Ω)∆Ω

×

[

1 TeV

mB1

]2
∑

q

〈σqqv〉

pb

∫ mB1

Eth

dE
dN q

γ

dE
, (15)
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the astrophysical electrons as well as three parameters that describes the particle di↵usion

coe�cient inside the galactic magnetic field. For details of our parametrization, see Ref. [33].
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FIG. 5: The max. allowed BRH/BRL, Assuming the leptonic channels account for the e+ excess,

PAMELA’s antiproton bound gives an upper limit for hadronic channels.

We illustrate one best-fit example at a fixed dark matter mass in Fig. 4. The variance

in the astrophysical background can lower the galactic e± flux so that the combined galac-

tic+DM flux fits the AMS2 results [24].

For each mass of the dark matter (KK photon), the preferred BF· hv�i is obtained by

fitting to AMS2 data, and can be parametrized as

BRL · BF hv�i = �17.6
⇣ mDM

1 TeV

⌘2

+ 130
⇣ mDM

1 TeV

⌘
+ 169 pb (26)

for 0.6 TeV < mDM < 4 TeV

where BRL =
P

l=e,µ,⌧ BRl+l� is the sum of branching fractions into charged leptons. Due

to the fact that antiprotons constrain BRH to be much smaller than BRL, we ignore the e±

from hadronic channels.

Combining Eq. 25 and 26, we can impose a maximal BRH/BRL at each dark matter

mass, for not over-producing antiprotons while the e± explains the positron excess. We find

for our KK scenarios, such limit is at 3⇠4% of the leptonic branching ratio, as shown in

Fig. 5. We use this BRH/BRL in our scans of the non-universal Scenario I and II, and the

results are plotted in Fig. 6, where the regions that satisfy the BRH/BRL and LHC dilepton

searches are separately shaded. Interestingly we found no overlap between to two allowed
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FIG. 6: Contours of dark matter mass mLKP Scenario I (left) and II (right). The yellow shaded

region is the allowed by dilepton search at LHC, and blue shaded region satisfy the antiproton

limit while explains the positron excess.

regions, thus ruling the possibility of these UED scenarios, with flavor universality in both

leptonic and hadronic sector, as viable explanation to the cosmic positron excess.

V. CONCLUSION

Models with universal extra dimensions provides interesting signals in both collider and

astrophysical experiments. Collider experiments, especially null results at the LHC, are

pushing the KK scale higher, while consideration of relic abundance place an upper bound

on the same KK mass scale. In Minimal UED model, there are two parameters, radius of

extra dimension (KK scale) R and the cuto↵ scale ⇤. However essentially the model mostly

relies on R, since the cuto↵ dependence comes in logarithmically. Most of existing studies

are based on this minimal assumption including vanishing boundary terms and bulk masses.

Therefore it is natural to consider an extension of MUED including such terms.

In this paper we revisited astrophysical signals from Kaluza-Klein dark matter in UED

Model with brane-localized terms and fermion-bulk masses, Next-to-Minimal UED. By intro-

ducing hadronic bulk mass, one can easily suppress anti-proton flux, and therefore enhance

positron flux. However the required hadronic bulk mass induces interaction between level-2

KK gauge bosons and the SM fermion pair, which is strongly constrained by the resonance

14
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FIG. 1: KK photon mass contours in the universal case across allowed parameter space by collider

constraints. All points are consistent with ⌦mh2 = 0.11.

the hadronic sector and µL is for the leptonic sector. Since the boundary terms are zero,

all boson masses are n/R and fermions become heavier than KK bosons. For a given µQ,

µL, R�1 can be fixed by relic abundance. This set up naturally leads to an interesting

branching fractions for appropriate explanation of astronomical observations. Branching

fractions and the KK photon mass are shown in Fig. 6. As expected in large µQ region,

branching fractions of KK photon annihilation into jj are suppressed, while in small µL

region, branching fractions into leptons are enhanced.

Since a large µ increases the coupling between level-2 KK gauge bosons and the SM

fermion pair, both dijet and dilepton limits become important, and this has been investigated

in Ref. [9]. Yellow-shaded region are allowed by LHC data with 1fb�1 at 7 TeV. Large

µL > �1.5 is cut o↵ by oblique correction. LHC exclusion for �1.5µLL < �0.3 is due to

the dilepton search and exclusion for �0.3 < µLL < 0 is due to the dijet search. We expect

that analysis with full data set at 7+8 TeV will further constrain the parameter space.

Scenario II: µEW = 0 = rQ.

In this scenario we consider vanishing bulk and boundary terms in the electroweak sector,

µEW = 0 = rQ. Remaining three parameters are µQ and rL, and R�1. Similarly to the

previous case, a (µQ, rL) fixes R�1 andmLKP from relic abundance calculation. As expected,

in a large µQ, branching fractions to the jj final states are suppressed as shown in Fig. 6.
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FIG. 1: Predicted spin-dependent proton cross sections (dark-
shaded, blue), along with the projected sensitivity of a 100
kg NAIAD array [14]; and predicted spin-independent pro-
ton cross sections (light-shaded, red), along with the current
EDELWEISS sensitivity [15], and projected sensitivities of
CDMS [16], GENIUS [17], and CRESST [18]. (The CRESST
projection is long-term and conditional upon increased expo-
sure and improved background rejection.) The predictions are
for mh = 120 GeV and 0.01 ≤ r = (mq1 − mB1)/mB1 ≤ 0.5,
with contours for specific intermediate r labeled.

is compensated in large nuclei where spin-independent
rates are enhanced by ∼ A2. In the case of bosonic KK
dark matter, the latter effect dominates, and the spin-
independent experiments have the best prospects for de-
tection, with sensitivity to mB1 far above current limits.

Dark matter may also be detected when it annihilates
in the galactic halo, leading to positron excesses in space-
based and balloon experiments. The positron flux is [19]

dΦe+

dΩdE
=

ρ2

m2
B1

∑

i

〈σiv〉B
i
e+

∫

dE0fi(E0)G(E0, E) , (12)

where ρ is the local dark matter mass density, the sum
is over all annihilation channels i, and Bi

e+ is the e+

branching fraction in channel i. The initial positron en-
ergy distribution is given by f(E0), and the Green func-
tion G(E0, E) propagates positrons in the galaxy.

Several channels contribute to the positron flux. Here
we focus on the narrow peak of primary positrons
from direct B1B1 → e+e− annihilation. (Annihilation
to muons, taus and heavy quarks also yield positrons
through cascade decays, but with relatively soft and
smeared spectra.) In this case, the source is monoen-
ergetic, and Eq. (12) simplifies to

dΦe+

dΩdE
= 2.7 × 10−8cm−2s−1sr−1GeV−1 〈σeev〉

pb

×

[

ρ

0.3 GeV/cm3

]2 [

1 TeV

mB1
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g

(
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)

, (13)

FIG. 2: Predicted positron signals (dark shaded) above back-
ground (light shaded) as a function of positron energy for
mB1 = me1

L
= me1

R
= 100, 500, 750, and 1000 GeV.

where the annihilation cross section is

〈σeev〉 =
e4

9π cos4 θW

[

Y 4
e1

L

m2
B1 + m2

e1
L

+ (L → R)

]

, (14)

and the reduced Green function g is as in Ref. [20].
Positron spectra and an estimated background (model

C from Ref. [19]) are given in Fig. 2. The sharp peak at
Ee+ = mB1 is spectacular — while propagation broad-
ens the spectrum, the mono-energetic source remains ev-
ident. This feature is extremely valuable, as the back-
ground, although resulting from many sources, should be
smooth. Maximal Ee+ also enhances detectability since
the background drops rapidly with energy. Both of these
virtues are absent for neutralinos, where Majorana-ness
implies helicity-suppressed annihilation amplitudes, and
positrons are produced only in cascades, leading to soft,
smooth spectra [21]. A peak in the e+ spectrum will not
only be a smoking gun for B1 dark matter, it will also
exclude neutralinos as the source.

Of the many positron experiments, the most promis-
ing is AMS [22], the anti-matter detector to be placed
on the International Space Station. AMS will distin-
guish positrons from electrons even at 1 TeV energies [23].
With aperture 6500 cm2sr and a runtime of 3 years, AMS
will detect ∼ 1000 positrons with energy above 500 GeV,
and may detect a positron peak from B1 dark matter.

Photons from dark matter annihilation in the center of
the galaxy also provide an indirect signal. The line signal
from B1B1 → γγ is loop-suppressed, and so we consider
continuum photon signals. The integrated photon flux
above some photon energy threshold Eth is [20]

Φγ(Eth) = 5.6 × 10−12 cm−2 s−1J̄(∆Ω)∆Ω

×

[

1 TeV

mB1

]2
∑

q

〈σqqv〉

pb

∫ mB1
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dE
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, (15)
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the astrophysical electrons as well as three parameters that describes the particle di↵usion

coe�cient inside the galactic magnetic field. For details of our parametrization, see Ref. [33].
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FIG. 5: The max. allowed BRH/BRL, Assuming the leptonic channels account for the e+ excess,

PAMELA’s antiproton bound gives an upper limit for hadronic channels.

We illustrate one best-fit example at a fixed dark matter mass in Fig. 4. The variance

in the astrophysical background can lower the galactic e± flux so that the combined galac-

tic+DM flux fits the AMS2 results [24].

For each mass of the dark matter (KK photon), the preferred BF· hv�i is obtained by

fitting to AMS2 data, and can be parametrized as

BRL · BF hv�i = �17.6
⇣ mDM

1 TeV

⌘2

+ 130
⇣ mDM

1 TeV

⌘
+ 169 pb (26)

for 0.6 TeV < mDM < 4 TeV

where BRL =
P

l=e,µ,⌧ BRl+l� is the sum of branching fractions into charged leptons. Due

to the fact that antiprotons constrain BRH to be much smaller than BRL, we ignore the e±

from hadronic channels.

Combining Eq. 25 and 26, we can impose a maximal BRH/BRL at each dark matter

mass, for not over-producing antiprotons while the e± explains the positron excess. We find

for our KK scenarios, such limit is at 3⇠4% of the leptonic branching ratio, as shown in

Fig. 5. We use this BRH/BRL in our scans of the non-universal Scenario I and II, and the

results are plotted in Fig. 6, where the regions that satisfy the BRH/BRL and LHC dilepton

searches are separately shaded. Interestingly we found no overlap between to two allowed
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FIG. 6: Contours of dark matter mass mLKP Scenario I (left) and II (right). The yellow shaded

region is the allowed by dilepton search at LHC, and blue shaded region satisfy the antiproton

limit while explains the positron excess.

regions, thus ruling the possibility of these UED scenarios, with flavor universality in both

leptonic and hadronic sector, as viable explanation to the cosmic positron excess.

V. CONCLUSION

Models with universal extra dimensions provides interesting signals in both collider and

astrophysical experiments. Collider experiments, especially null results at the LHC, are

pushing the KK scale higher, while consideration of relic abundance place an upper bound

on the same KK mass scale. In Minimal UED model, there are two parameters, radius of

extra dimension (KK scale) R and the cuto↵ scale ⇤. However essentially the model mostly

relies on R, since the cuto↵ dependence comes in logarithmically. Most of existing studies

are based on this minimal assumption including vanishing boundary terms and bulk masses.

Therefore it is natural to consider an extension of MUED including such terms.

In this paper we revisited astrophysical signals from Kaluza-Klein dark matter in UED

Model with brane-localized terms and fermion-bulk masses, Next-to-Minimal UED. By intro-

ducing hadronic bulk mass, one can easily suppress anti-proton flux, and therefore enhance

positron flux. However the required hadronic bulk mass induces interaction between level-2

KK gauge bosons and the SM fermion pair, which is strongly constrained by the resonance

14
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FIG. 1: KK photon mass contours in the universal case across allowed parameter space by collider

constraints. All points are consistent with ⌦mh2 = 0.11.

the hadronic sector and µL is for the leptonic sector. Since the boundary terms are zero,

all boson masses are n/R and fermions become heavier than KK bosons. For a given µQ,

µL, R�1 can be fixed by relic abundance. This set up naturally leads to an interesting

branching fractions for appropriate explanation of astronomical observations. Branching

fractions and the KK photon mass are shown in Fig. 6. As expected in large µQ region,

branching fractions of KK photon annihilation into jj are suppressed, while in small µL

region, branching fractions into leptons are enhanced.

Since a large µ increases the coupling between level-2 KK gauge bosons and the SM

fermion pair, both dijet and dilepton limits become important, and this has been investigated

in Ref. [9]. Yellow-shaded region are allowed by LHC data with 1fb�1 at 7 TeV. Large

µL > �1.5 is cut o↵ by oblique correction. LHC exclusion for �1.5µLL < �0.3 is due to

the dilepton search and exclusion for �0.3 < µLL < 0 is due to the dijet search. We expect

that analysis with full data set at 7+8 TeV will further constrain the parameter space.

Scenario II: µEW = 0 = rQ.

In this scenario we consider vanishing bulk and boundary terms in the electroweak sector,

µEW = 0 = rQ. Remaining three parameters are µQ and rL, and R�1. Similarly to the

previous case, a (µQ, rL) fixes R�1 andmLKP from relic abundance calculation. As expected,

in a large µQ, branching fractions to the jj final states are suppressed as shown in Fig. 6.
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FIG. 1: Predicted spin-dependent proton cross sections (dark-
shaded, blue), along with the projected sensitivity of a 100
kg NAIAD array [14]; and predicted spin-independent pro-
ton cross sections (light-shaded, red), along with the current
EDELWEISS sensitivity [15], and projected sensitivities of
CDMS [16], GENIUS [17], and CRESST [18]. (The CRESST
projection is long-term and conditional upon increased expo-
sure and improved background rejection.) The predictions are
for mh = 120 GeV and 0.01 ≤ r = (mq1 − mB1)/mB1 ≤ 0.5,
with contours for specific intermediate r labeled.

is compensated in large nuclei where spin-independent
rates are enhanced by ∼ A2. In the case of bosonic KK
dark matter, the latter effect dominates, and the spin-
independent experiments have the best prospects for de-
tection, with sensitivity to mB1 far above current limits.

Dark matter may also be detected when it annihilates
in the galactic halo, leading to positron excesses in space-
based and balloon experiments. The positron flux is [19]

dΦe+

dΩdE
=

ρ2

m2
B1

∑

i

〈σiv〉B
i
e+

∫

dE0fi(E0)G(E0, E) , (12)

where ρ is the local dark matter mass density, the sum
is over all annihilation channels i, and Bi

e+ is the e+

branching fraction in channel i. The initial positron en-
ergy distribution is given by f(E0), and the Green func-
tion G(E0, E) propagates positrons in the galaxy.

Several channels contribute to the positron flux. Here
we focus on the narrow peak of primary positrons
from direct B1B1 → e+e− annihilation. (Annihilation
to muons, taus and heavy quarks also yield positrons
through cascade decays, but with relatively soft and
smeared spectra.) In this case, the source is monoen-
ergetic, and Eq. (12) simplifies to

dΦe+

dΩdE
= 2.7 × 10−8cm−2s−1sr−1GeV−1 〈σeev〉
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FIG. 2: Predicted positron signals (dark shaded) above back-
ground (light shaded) as a function of positron energy for
mB1 = me1

L
= me1

R
= 100, 500, 750, and 1000 GeV.

where the annihilation cross section is

〈σeev〉 =
e4

9π cos4 θW

[

Y 4
e1
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m2
B1 + m2

e1
L

+ (L → R)

]

, (14)

and the reduced Green function g is as in Ref. [20].
Positron spectra and an estimated background (model

C from Ref. [19]) are given in Fig. 2. The sharp peak at
Ee+ = mB1 is spectacular — while propagation broad-
ens the spectrum, the mono-energetic source remains ev-
ident. This feature is extremely valuable, as the back-
ground, although resulting from many sources, should be
smooth. Maximal Ee+ also enhances detectability since
the background drops rapidly with energy. Both of these
virtues are absent for neutralinos, where Majorana-ness
implies helicity-suppressed annihilation amplitudes, and
positrons are produced only in cascades, leading to soft,
smooth spectra [21]. A peak in the e+ spectrum will not
only be a smoking gun for B1 dark matter, it will also
exclude neutralinos as the source.

Of the many positron experiments, the most promis-
ing is AMS [22], the anti-matter detector to be placed
on the International Space Station. AMS will distin-
guish positrons from electrons even at 1 TeV energies [23].
With aperture 6500 cm2sr and a runtime of 3 years, AMS
will detect ∼ 1000 positrons with energy above 500 GeV,
and may detect a positron peak from B1 dark matter.

Photons from dark matter annihilation in the center of
the galaxy also provide an indirect signal. The line signal
from B1B1 → γγ is loop-suppressed, and so we consider
continuum photon signals. The integrated photon flux
above some photon energy threshold Eth is [20]

Φγ(Eth) = 5.6 × 10−12 cm−2 s−1J̄(∆Ω)∆Ω

×

[

1 TeV

mB1

]2
∑
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〈σqqv〉

pb

∫ mB1
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dE
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, (15)
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Figure 1. Oblique (S, T, U) bonds on R�1 with the latest Gfitter data with mh = 126 GeV. The
plots show contours of minimally allowed R�1 in the rt/L vs. µt/L parameter space for rg/L = 0
(left) and rg/L = 1 (right). The shaded areas are excluded because there, the lightest Kaluza-Klein
particle is a KK bottom, thereby representing a charged dark matter particle.

boundary parameter rt ⌘ rQ3 = rB = rT , which, together with the compactification scale

R�1 leaves us with three parameters. As an additional parameter, we consider a common

boundary parameter rg for all other fields (i.e. the Higgs, the gauge fields and leptons,

and the first and second family quarks) in order to illustrate how the bounds change in the

presence of a common boundary parameter with only the third family quarks di↵ering.

We present all results as bounds on the compactification scale R�1 as a function of

the dimensionless parameters µtL and rt/L. To indicate the e↵ect of a common boundary

term, we show constraints for rg/L = 0 (“vanishing boundary parameter”) and rg/L = 1

(“typical boundary parameter”).5

The electroweak bounds shown in Fig. 1 are obtained by performing a �2 fit of the

parameters SUED, TUED, UUED from Eq. (5.3) to the experimental values given in Ref. [45]:

SNP = 0.03± 0.10 , TNP = 0.05± 0.12 , UNP = 0.03± 0.10, (6.1)

for a reference point mh = 126GeV and mt = 173GeV with correlation coe�cients of +0.89

between SNP and TNP , and �0.54 (�0.83) between SNP and UNP (TNP and UNP ).

The results are shown in Fig.1. For rg/L = 0, The mass of the first U(1)Y KK mode

B(1) (the usual UED dark matter candidate) is given by R�1. For large rt/L and low µt/L,

the first KK bottom partner is lighter than the B(1) which implies charged dark matter

and is therefore excluded. For rg/L 6= 0, the same applies, although the mass of the B(1)

is not given by R(1) anymore but determined by Eq. (3.16).

5An NDA estimate for the boundary parameter yields [31] r/L . 12/⇤R, where ⇤ is the UED cuto↵

scale, and ⇤R gives an estimate for the number of KK levels below the cuto↵ scale.
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Figure 2. Constraints from higgs searches at ATLAS and CMS combined. The plots show contours
of minimally allowed R�1 in the rt/L vs. µt/L parameter space for rg/L = 0 (left) and rg/L = 1
(right). The shaded areas are excluded because there, the lightest Kaluza-Klein particle is a KK
bottom, thereby representing a charged dark matter particle.

7 Summary and outlook
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Summary
• MH=126 GeV and relic abundance disfavors 2UED with minimal 

mass spectrum
• MUED is very constrained

– Rinv > 1.2 TeV from tri-lepton search (8 TeV)
– Rinv < 1.5 TeV from relic abundance

• NMUED introduces brane terms and bulk masses
– More parameter space, and hence tension reduced
– Can accommodate Higgs in broad parameter space
– Positron/antiproton data disfavors universal parametrization
– dijet+positron data indicates more complicated structure
– MUED exists in various event generators: CalcHEP, PYTHIA, 

MG/ME, Herwig, Sherpa, etc
– For NMUED, coupling and mass spectrum can be modified 

easily



Why Consider Exotica?

• Some exotica aren’t really all that exotic
• Urgent – real possibilities for 2009-10
• You have the potential to advance science

    Would experimentalists have thought of this if you didn’t do this work?   
                                                                                 – Witten

• …and you might actually advance science

    Never start a project unless you have an unfair advantage.   
                                                                                  – Seiberg

stolen from Joe’s talk
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• It’s fun
     If every individual student follows the same current fashion …, 

then the variety of hypotheses being generated…is limited. 
Perhaps rightly so, for possibly the chance is high that the truth 
lies in the fashionable direction. But, on the off-chance that it is in 
another direction - a direction obvious from an unfashionable 
view … -- who will find it? Only someone who has sacrificed 
himself…I say sacrificed himself because he most likely will get 
nothing from it…But, if my own experience is any guide, the 
sacrifice is really not great because…you always have the 
psychological excitement of feeling that possibly nobody has yet 
thought of the crazy possibility you are looking at right now. 

– Richard Feynman, Nobel Lecture

stolen from Joe’s talk


